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Abstract. We introduce a new construction of matrix wreath products of
algebras that is similar to the construction of wreath products of groups intro-

duced by L. Kaloujnine and M. Krasner [17]. We then illustrate its usefulness

by proving embedding theorems into finitely generated algebras and construct-
ing nil algebras with prescribed Gelfand-Kirillov dimension.

1. Matrix Wreath Products

Let F be a field and let A,B be two associative F -algebras. Let Lin(A,B) denote
the vector space of all F -linear transformations A→ B.

We will define multiplication on Lin(B,B ⊗F A). Let f, g ∈ Lin(B,B ⊗F A).
For an arbitrary element b ∈ B, let g(b) =

∑
i

bi⊗ ai, where ai ∈ A and bi ∈ B. Let

f(bi) =
∑
j

bij ⊗ aij , where aij ∈ A and bij ∈ B. Define

(fg)(b) =
∑
i,j

bij ⊗ aijai.

We define a structure of a B-bimodule on Lin(B,B ⊗F A). For an arbitrary
element b ∈ B and a linear transformation f : B → B ⊗F A, we define linear
transformations fb and bf via

(fb)(b′) = f(bb′) and

(bf)(b′) = (b⊗ 1)f(b′), b′ ∈ B.

In other words, if f(b′) =
∑
i

bi ⊗ ai then (bf)(b′) =
∑
i

bbi ⊗ ai. Now consider the

semidirect sum

A oB = B + Lin(B,B ⊗F A)

that extends multiplication on B and on Lin(B,B ⊗F A).

Theorem 1. A oB is an associative algebra.
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Choose a basis {bi}i∈I of the algebra B. For a linear transformation f : B →
B ⊗F A, let

f(bj) =
∑
i

bi ⊗ aij .

Consider the I×I matrix Af = (aij)I×I . Each column of this matrix contains only
finitely many nonzero entries.

Let MI×I(A) denote the algebra of I × I matrices over A having finitely many
nonzero entries in each column. Then f → Af , f ∈ Lin(B,B ⊗F A), is an isomor-
phism Lin(B,B ⊗F A)→MI×I(A).

The wreath product G1 oG2 of two groups G1 and G2 embeds in the multiplica-
tive group of the matrix wreath product FG1 o FG2 of group algebras.

Indeed, let Fun(G2, G1) be the group of mappings from G2 to G1 with pointwise
multiplication: (fg)(a) = f(a)g(a) for all f, g ∈ Fun(G2, G1) with a ∈ G2. Then
G1 o G2 is the semidirect product of G2 Fun(G2, G1) with (b−1fb)(a) = f(ba) for
arbitrary elements a, b ∈ G2.

For a mapping f : G2 → G1, consider the “diagonal” linear transformation
diag(f) : g → g⊗f(g) for g ∈ G2. The mappings b→ b and f → diag(f) for b ∈ G2

and f ∈ Fun(G2, G1) extend to an embedding of G1 o G2 into the multiplicative
group FG1 o FG2.

If BM is a left module over the algebra B, then we can define

A oM B = B + Lin(M,M ⊗F A).

Different constructions of wreath products of Lie algebras were introduced by
A. L. Smel’kin [27] and V. Petrogradsky, Y. Razmyslov, E. Shishkin [24] and
L. Bartholdi [3].

In what follows, we will always assume that the algebra B is finitely generated,
infinite dimensional, and, moreover, {b ∈ B |dim bB <∞} = (0).

Along with the algebra of matrices MI×I(A), we will consider two important
subalgebras:

(1) M∞(A) that consists of I × I matrices having finitely many nonzero entries,
and

(2) the subalgebra S(A,B) that consists of matrices having finitely many nonzero
rows. In the language of linear transformations ϕ : B → B⊗FA, the subalgebra
S(A,B) consists of such ϕ for which there exists a finite dimensional subspace
V ⊂ B with ϕ(B) ⊆ V ⊗F A.

Clearly M∞(A) ⊂ S(A,B).

Theorem 2. Let M∞(A) ⊆ S ⊆ S(A,B) be a subalgebra such that BS + SB ⊆ S.
Then

(1) the algebra B + S is prime if and only if the algebra A is prime, and
(2) the algebra B + S is (left) primitive if and only if the algebra A is primitive.

We say that a linear transformation γ : B → A is a generating linear transfor-
mation if γ(B) generates the algebra A. Suppose that 1 ∈ B. Let γ : B → A be a
generating linear transformation. Consider the element

cγ : b→ 1⊗ γ(b) ∈ B ⊗F A.
Consider the subalgebra 〈B, cγ〉 generated in A oB by B and the element cγ .

For an element a ∈ A and two indices i, j ∈ I, let eij(a) denote the matrix
whose (i, j)-entry is a and all other entries are equal to zero. For a fixed element
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u ∈ A, we consider also the subalgebra 〈B, cγ , e11(u)〉. Clearly, 〈B, cγ , e11(u)〉 lies
in B + S(A,B). If u = 1, then M∞(A) ⊆ 〈B, cγ , e11(1)〉.

Since we always assume that the algebra B is finitely generated, the algebras
〈B, cγ〉, 〈B, cγ , e11(u)〉 are finitely generated as well. Our immediate goal now is to
estimate growth of these algebras.

We start with some general definitions. Consider an F -algebra R generated by
a finite dimensional subspace V . Let

V n = spanF
{
v1 · · · vk | k ≤ n, vi ∈ V, 1 ≤ i ≤ k

}
.

Then dimF V
n < ∞ and R is the union of the ascending chain V 1 ⊆ V 2 ⊆ · · · .

The function g(V, n) = dimF V
n is called the growth function of the algebra R that

corresponds to the generating subspace V .
Let N denote the set of positive integers. Given two functions f, g : N→ [1,∞),

we say that f � g (f is asymptotically less than or equal to g) if there exists a
constant c ∈ N such that f(n) ≤ cg(cn) for all n ∈ N. If f � g and g � f , then f
and g are said to be asymptotically equivalent, i.e., f ∼ g. If V and W are finite
dimensional generating subspaces of A, then g(V, n) ∼ g(W,n). We will denote the
class of equivalence of g(V, n) as gA.

A finitely generated algebra R has polynomially bounded growth if there exists
α > 0 such that gR(n) � nα. Then

GKdim(R) = inf
{
α > 0 | gR(n) � nα

}
is called the Gelfand-Kirillov dimension of R. If the growth of R is not polynomially
bounded, then we let GKdim(R) = ∞. If the algebra R is not finitely generated,
then the Gelfand-Kirillov dimension of R is defined as the supremum of Gelfand-
Kirillov dimensions of all finitely generated subalgebras of R.

For n ≥ 1, consider the vector space

Wn =
∑

i1+···+ir≤n

γ(V i1) · · · γ(V ir ),

and let A =
⋃
n≥1

Wn. Clearly, dimF Wn < ∞ and W1 ⊆ W2 ⊆ · · · ⊆ A. Denote

wγ(n) = dimF Wn. We call wγ(n) the growth function of the linear transforma-
tion γ.

A linear transformation γ : B → A is said to be dense if for arbitrary linearly
independent elements b1, . . . , bn ∈ B and an arbitrary nonzero element a ∈ A, there
exists an element b ∈ B such that γ(bib) = 0, 1 ≤ i ≤ n− 1, and aγ(bnb) 6= 0.
Theorem 3.

(1) g〈B,cγ ,e11(u)〉 � g2B(n)wγ(n).

(2) If the generating linear transformation γ is dense, then g〈B,cγ〉(n) ∼ g2B(n)wγ(n).

2. Embedding Theorems

G. Higman, H. Neumann, and B. H. Neumann [15] proved that every countable
group embeds in a finitely generated group. The papers [4], [23], [25], and [30]
show that some important properties can be inherited by these embeddings. Much
of this work relies on wreath products of groups.

Following [15], A. I. Malcev [21] showed that every countable dimensional as-
sociative algebra over a field is embeddable in a finitely generated algebra, and
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A. I. Shirshov [26] showed that every countable dimensional Lie algebra is embed-
dable in a finitely generated Lie algebra.

Let A be an associative algebra, and let I be a countable set. As above, we
consider the algebra M∞(A) of I×I matrices having finitely many nonzero entries.
Clearly, the algebra A is embeddable in M∞(A) in many ways. We say that an
algebra A is M∞-embeddable in an algebra B if there exists an embedding ϕ :
M∞(A)→ B. We say that A is M∞-embeddable in B as a (left, right) ideal if the
image of ϕ is a (left, right) ideal in B.

Observe that [1] extended the theorem of Malcev in the following way: every
countable dimensional associative algebra over a field is M∞-embeddable in a
finitely generated algebra as an ideal.

3. Radical Algebras

S. Amitsur [2] asked if a finitely generated algebra can have a non-nil Jacobson
radical. The first examples of such algebras were constructed by K. Beidar [9].
J. Bell [6] constructed examples having finite Gelfand-Kirillov dimension. Finally,
L. Bartholdi and A. Smoktunowicz [29] constructed a finitely generated Jacobson
radical non-nil algebra of Gelfand-Kirillov dimension two.

Theorem 4. An arbitrary countable dimensional Jacobson radical algebra is em-
beddable in a finitely generated Jacobson radical algebra.

Theorem 5. An arbitrary countable dimensional Jacobson radical algebra of Gelfand-
Kirillov dimension d over a countable field is embeddable in a finitely generated
Jacobson radical algebra of Gelfand-Kirillov dimension ≤ d+ 6.

We will start with the following lemma.

Lemma 1. For an arbitrary Jacobson radical algebra A, there exists a Jacobson

radical algebra Ã and an element u ∈ Ã, with u3 = 0, such that A is embeddable in

the right ideal uÃ (resp. left ideal Ãu.)

Proof. Consider the two dimensional nilpotent algebra B = Fb+Fb2, b3 = 0. Then

Ã = A oB = B +M2(A) is a Jacobson radical algebra and e22(A) ⊆ bÃ. �

Sketch of the proof of Theorem 4. LetB be a finitely generated infinite dimensional

nil algebra of E. S. Golod [11]. Let B̂ = B+F ·1 be its unital hull. Let Ã be the Ja-

cobson radical algebra of Lemma 1, u ∈ Ã, u3 = 0, A ≤ Ãu. Consider a generating

linear transformation γ : B̂ → Ã and the element cγ ∈ Lin(B̂, B̂ ⊗F Ã). Then the
algebra 〈B, cγ , e11(u)〉 is finitely generated and Jacobson radical. Hence, the algebra
A is embeddable in a finitely generated Jacobson radical algebra 〈B, cγ , e11(u)〉. �

To prove Theorem 5, we will need the following lemma.

Lemma 2. Let A be a countable dimensional algebra of Gelfand-Kirillov dimension
≤ d. Let B be an arbitrary finitely generated algebra. Then there exists a generating
linear transformation γ : B → A such that wγ(n) ≤ nd+εn where εn > 0, εn → 0 as
n→∞.

Instead of the Golod nil algebra B, we will consider a finitely generated nil alge-
bra B of polynomially bounded growth. Existence of such algebras was established
by T. Lenagan and A. Smoktunowicz in [19] under the assumption that the ground
field is countable. In [20], T. Lenagan, A. Smoktunowicz, and A. Young refined the
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argument of [19] and obtained a finitely generated nil algebra of Gelfand-Kirillov
dimension ≤ 3.

Let A ↪→ Ãu, u3 = 0, be the embedding of Lemma 1, and let B be the nil
algebra of [20]. Arguing as above, we embed the algebra A in the finitely generated

subalgebra 〈B, cγ , e11(u)〉 of Ã o B̂, where γ is a generating linear transformation of
Lemma 2. By Theorem 3(1), we have

g〈B,cγ ,e11(u)〉 � gB(u)2wγ(u),

which implies GKdim〈B, cγ , e11(u)〉 ≤ d+ 6.

4. Nil Algebras

We say that a nil algebra A is stable nil (resp. stable algebraic) if all matrix
algebras Mn(A) are nil (resp. algebraic).

Theorem 6. An arbitrary stable nil algebra A is embeddable in a finitely generated
stable nil algebra. If GKdimA = d < ∞ and the ground field is countable, then
A is embeddable in a finitely generated nil algebra of Gelfand-Kirillov dimension
≤ d+ 6.

To use the wreath product constructions as above, we will need a finitely gen-
erated infinite dimensional stable nil algebra. Existence of such algebras can be
established using methods from E. S. Golod [11] based on Golod-Shafarevich in-
equalities [12].

More precisely, let F 〈x1, · · · , xm〉 be the associative algebra on m free generators,
m ≥ 2. We consider the free algebra without 1, i.e., it consists of formal linear
combinations of nonempty words in x1, . . . , xm. Assigning degree 1 to all variables
x1, . . . , xm, we make F 〈x1, . . . , xm〉 a graded algebra. The degree deg(a) of an
arbitrary element a ∈ F 〈x1, . . . , xm〉 is defined as the minimal degree of a nonzero
homogeneous component of a.

Let R ⊂ F 〈x1, . . . , xm〉 be a subset containing finitely many elements of each
degree.
Golod-Shafarevich Condition: If there exists a number 1

m < t0 < 1 such that∑
a∈R

t
deg(a)
0 <∞ and 1−mt0+

∑
a∈R

t
deg(a)
0 < 0, then the algebra 〈x1, . . . , xm |R = (0)〉

presented by the set of generators x1, . . . , xm and the set of relations R is infinite
dimensional.

Lemma 3. For m ≥ 2, there exists a subset R ⊂ F 〈x1, . . . , xm〉 satisfying the
Golod-Shafarevich Condition and such that the algebra 〈x1, . . . , xm |R = (0)〉 is
stable nil.

For a stable nil algebra A and its extension A ⊂ Ãu, u3 = 0, of Lemma 1 and an
algebra B of Lemma 3, the finitely generated algebra 〈B, cγ , e11(u)〉 is stable nil.
It implies the first part of Theorem 6.

Now let F be a countable field, let B be the Lenagan-Smoktunowicz-Young alge-
bra [20], and let A be a countable dimensional stable nil algebra of GKdimA ≤ d.
Then the algebra 〈B, cγ , e11(u)〉 is nil and has Gelfand-Kirillov dimension ≤ d+ 6.
We do not know if this finitely generated algebra is stable nil.
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5. Primitive Algebras

I. Kaplansky [18] asked if there exists an infinite dimensional finitely generated
algebraic primitive algebra, a particular case of the celebrated Kurosh Problem.
Such examples were constructed by J. Bell and L. Small in [7]. Then J. Bell,
L. Small, and A. Smoktunowicz [8] constructed finitely generated algebraic primi-
tive algebras of finite Gelfand-Kirillov dimension provided that the ground field is
countable.

Theorem 7. An arbitrary countable dimensional stable algebraic primitive algebra
is M∞-embeddable as a left ideal in a 2-generated algebraic primitive algebra.

This theorem answers the first part of question 7 from [8].

Theorem 8. Let F be a countable field. An arbitrary countable dimensional stable
algebraic primitive algebra of Gelfand-Kirillov dimension ≤ d is M∞-embeddable
as a left ideal in a finitely generated algebraic primitive algebra of Gelfand-Kirillov
dimension ≤ d+ 6.

Without loss of generality, we assume that a countable dimensional stable alge-
braic algebra A is unital. As above, we start with Golod’s finitely generated infinite

dimensional nil algebra B and a generating linear transformation γ : B̂ → A. Then

the algebra 〈B̂, cγ , e11(1)〉 is primitive by Theorem 2(2) and contains M∞(A) as a
left ideal.

The same argument with the Lenagan-Smoktunowicz-Young algebra B and a
linear transformation of Lemma 2 implies Theorem 8.

6. Algebras of Locally Subexponential Growth

Recently, L. Bartholdi and A. Erschler [4] proved that a countable group of
locally subexponential growth embeds in a finitely generated group of subexponen-
tial growth. We prove the analog of Bartholdi-Erschler theorem for algebras and
semigroups and establish some related results.

Given two functions f, g : N → [1,∞), we say that f is weakly asymptotically
less than or equal to g if for arbitrary α > 0, we have f � gnα (denoted f �w g).

A function f is subexponential if lim
n→∞

f(n)

eαn
= 0 for any α > 0. In the seminal

paper [14], R. I. Grigorchuk constructed the first example of a group with an inter-
mediate growth function: subexponential but growing faster than any polynomial.
Finitely generated associative algebras with intermediate growth functions come as
universal enveloping algebras of certain Lie algebras (see [28]).

A not necessarily finitely generated algebra A is of locally subexponential growth
if every finitely generated subalgebra of A has a subexponential growth function.

The growth of A is locally (resp. weakly) bounded by a function f(n) if for every
finitely generated subalgebra of A its growth function is � f(n) (resp. �w f(n)).

A function h(n) is superlinear if
h(n)

n
→∞ as n→∞.

Theorem 9. Let f(n) be an increasing function. Let A be a countable dimensional
associative algebra whose growth is locally weakly bounded by f(n). Let h(n) be a
superlinear function. Then the algebra A is M∞-embeddable as a left ideal in a
2-generated algebra whose growth is weakly bounded by f(h(n))n2.
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We then use Theorem 9 to derive an analog of the Bartholdi-Erschler Theo-
rem ([4]).

Theorem 10. A countable dimensional associative algebra of locally subexponential
growth is M∞-embeddable in a 2-generated algebra of subexponential growth as a
left ideal.

The idea of the proofs of Theorems 9 and 10 is the same as in previous sections.
We consider the matrix wreath product A o F [t−1, t] with the algebra F [t−1, t] of
Laurent polynomials and choose a generating linear transformation γ : F [t−1, t]→
A with appropriate subexponential growth function wγ(n). The algebra A is then
M∞-embeddable as a left ideal in the finitely generated algebra C = 〈F [t−1, t], cγ ,
e11(1)〉. By V. T. Markov’s theorem [22], the matrix algebra Mn(C) is 2-generated
for a sufficiently large n, which yields the result.

Using [28] and Theorem 10, we can prove an embedding theorem for countable
dimensional Lie algebra of locally subexponential growth.

Theorem 11. Let F be a field of characteristic 6= 2. Every countable dimensional
Lie F -algebra of locally subexponential growth is embeddable in a finitely generated
Lie algebra of subexponential growth.

7. Gelfand-Kirillov Dimension of Nil Algebras

In this section, we assume that the ground field F is countable. Question 1
from [8] asks if an arbitrary sufficiently big α ≥ 2 is the Gelfand-Kirillov dimension
of some finitely generated nil algebra.

Theorem 12. Let F be a countable field. For an arbitrary d ≥ 8, there exists a
finitely generated nil F -algebra of Gelfand-Kirillov dimension d.

LetB be the finitely generated infinite dimensional algebra of Lenagan-Smoktunowicz-
Young [20] with GKdimB ≤ 3.

For an arbitrary α ≥ 2, W. Bohro and H. P. Kraft [10] constructed a graded

F -algebra R =
∞∑
i=1

Ri, generated by two elements x, y ∈ R1, such that for any ε > 0

we have

nα−ε ≤ dim

n∑
i=1

Ri ≤ nα+ε

for all sufficiently large n.
Using the Bohro-Kraft algebra, we construct a countable dimensional locally

nilpotent algebra A and a dense generating linear transformation γ : B → A of
growth wγ(n) such that for an arbitrary 0 < ε < α, we have( n

lnn

)n−ε
� wγ(n) � nα+ε(ln(lnn))2.

By Theorem 3, for the finitely generated algebra C = 〈B, cγ〉, we have gc(n) ∼
gB(n)2wγ(n), and therefore GKdim(C) = 2 GKdim(B) + α, which implies Theo-
rem 12.

Question. Let g : N → N be an increasing function such that n2 � g(n) and
g(m + n) ≤ g(m)g(n) for all m,n ∈ N. Is g(n) asymptotically equivalent to the
growth function of some finitely generated associative algebra?
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Conjecture. For all sufficiently large functions g : N→ N, the following assertions
are equivalent:

(1) g is asymptotically equivalent to the growth function of some finitely generated
associative algebra,

(2) g is asymptotically equivalent to the growth function of some finitely generated
primitive algebra,

(3) g is asymptotically equivalent to the growth function of some finitely generated
nil algebra.

L. Bartholdi and A. Smoktunowicz [5] proved that if g is an increasing submulti-
plicative function such that g(Cn) ≥ ng(n) for some C ∈ N and all n ∈ N then g is
asymptotically equivalent to the growth function of a finitely generated associative
algebra. Moreover, B. Greenfeld [13] showed that in this case there exists a finitely
generated primitive monomial algebra with the growth function equivalent to g.
This partially answers the questions above.
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