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Abstract. We give necessary and sufficient conditions for a skew polynomial
ring K[t; σ, δ] over a division ring K to be a left V -domain. In particular,
when this ring admits a unique simple left module, the conditions obtained
include: 1) all polynomials are Wedderburn, 2) all n× n matrices over K are
(σ, δ)-similar. We also provide necessary and sufficient conditions for this ring
to be both left and right V -domain. These results, that are indeed motivated
by a long-standing open question whether a left V-domain is a right V-domain,
provide clues towards finding a possible counterexample to this open question
or answering it in the affirmative for the ring K[t; σ, δ].

1. Introduction

Skew polynomial rings such as Weyl algebras and quantum groups have been a
source of many interesting examples in noncommutative ring theory. In particular,
differential polynomial ring over a “universal differential” field was the first exam-
ple of a simple right-left V -domain and PCI-domain (A domain such that each
proper cyclic right module is injective is called right PCI-domain). Although there
exists an example of a nondomain which is a left V -ring but not a right V -ring,
the question whether the property of being V -domain or PCI-domain is left-right
symmetric remains open. The examples in the literature that relate to these two
properties have been constructed by using either differential polynomial rings or
localizations of twisted polynomial rings (Cf. [C],[Os]). In this paper, we obtain
necessary and sufficient conditions for K[t; σ, δ] to be a left V -domain (equivalently,
left PCI-domain).We also provide conditions for K[t;σ, δ] to be both right and left
V -domain (PCI-domain).
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2. Notations and Definitions.

Throughout all rings have unity. A ring R is called a left V -ring if every simple
left R-module is injective. A ring R is called a left PCI-ring if each proper cyclic
left R-module is injective (i.e. Left R-modules R/I where I is a nonzero left ideal
are injective ). It is known that R is a left V -ring if and only if each left ideal is an
intersection of maximal left ideals (Cf. Cozzens and Faith [CF]). Furthermore, a
left PCI-ring R is known to be either semisimple artinian or simple left Noetherian
left hereditary domain such that each proper cyclic left R-module is semisimple
(Faith [F], Damiano [D]).

Let K be a division ring, σ be an endomorphism of K and δ be a σ-derivation
of K (i.e. δ is an additive endomorphism of K such that for a, b ∈ K, we have
δ(ab) = σ(a)δ(b) + δ(a)b). Throughout the paper R will denote the ring of left
polynomials K[t;σ, δ] whose elements are polynomials of the form

∑
i ait

i where
addition of polynomials is natural and multiplication of polynomials follows usual
multiplication rule with ta = σ(a)t + δ(a). We note that if σ is an automorphism
then we can also view the ring K[t;σ, δ] as a (right) polynomial ring with multipli-
cation induced by at = tσ−1(a) − δ(σ−1(a)). If δ = 0 then K[t; σ, δ] is the skew
polynomial ring K[t;σ] considered by Jacobson and others and if σ is the identity
then K[t; σ, δ] is the standard differential polynomial ring K[t; δ]. When δ = 0 and
σ = identity, K[t;σ, δ] is the classical polynomial ring K[t].

K[t;σ, δ] is a principal left ideal domain and right division algorithm holds, i.e.
for any two polynomials f(t) and g(t) there exist polynomials q(t) and r(t) such
that f(t) = q(t)g(t) + r(t), where the degree of r(t) is less than the degree of g(t).
The evaluation of a polynomial f ∈ R at c ∈ K, denoted by f(c), is the only
element in K satisfying f(t)− f(c) ∈ R(t− c). The rule for evaluating the product
f(t)g(t) of left polynomials f(t), g(t) ∈ R = K[t;σ, δ] at c ∈ K is given by:

(fg)(c) = 0 if g(c) = 0 and (fg)(c) = f(cg(c))g(c) if g(c) 6= 0,

where, for k ∈ K \ {0}, ck denotes σ(k)ck−1 + δ(k)k−1. It can be verified that
(ck)k′ = ck′k, for any nonzero elements k, k′ in K. An element b ∈ K is (σ, δ)-
conjugate to c if there exists k ∈ K\{0} such that b = ck. The (σ, δ) conjugacy is an
equivalence relation and we denote by ∆(c) = {σ(k)ck−1+δ(k)k−1 | 0 6= k ∈ K} the
(σ, δ) conjugacy class of c ∈ K. The conjugacy relation defined above is consistent
with the classical conjugacy relation (i.e. when σ = Id., δ = 0). In other words,
in the classical case ∆(c) = {kck−1 | 0 6= k ∈ K}. For any polynomial f ∈ R we
denote by V (f) the set of right roots of f , i.e. V (f) = {a ∈ K | f(a) = 0}. A monic
polynomial f in R is called a Wedderburn polynomial, in short W -polynomial, if
there exists a finite set {a1, ..., an} ⊂ K such that Rf = ∩n

i=1R(t − ai). In other
words, f is the monic least left common multiple of the polynomials t−a1, . . . , t−an.
In particular, any monic linear polynomial is a W -polynomial. The product formula
mentioned above shows that the monic least left common multiple of t − a, t − b
with a 6= b is the Wedderburn polynomial f(t) = (t−bb−a)(t−a) =(t−aa−b)(t−b).
Moreover it is known that a monic polynomial f ∈ R is a W -polynomial if and
only if f can be written as a product of linear polynomials and every quadratic
monic factor of f is a W -polynomial. For more information on left polynomial
rings R = K[t;σ, δ] the reader is referred to [LL4],[LL5],[LLO]. A ring S is called
an n-fir if each n-generated left ideal is free of unique rank ≤ n. This property
is left-right symmetric. We note that a domain S is a 2-fir if and only if, for all
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a, b ∈ S, Sa+Sb is principal whenever Sa∩Sb 6= 0. The left-right symmetry implies
that a similar characterization using right principal ideals also holds. Since a skew
polynomial ring R = K[t;σ, δ] over a division ring K is always a left principal ideal
domain, it is a 2-fir. In particular, if f, g ∈ R are such that fR ∩ gR 6= 0 then
fR + gR is a principal right ideal. This observation will be used freely in the text.

An element of a ring is called an atom if it is nonunit and cannot be written as
a product of nonunits. An integral domain is called atomic if every element other
than zero or a unit is a product of atoms. If an element a of a ring S is such that
Sa = ∩n

i=1Sfi, where f1, . . . , fn are atoms in S then a is called fully reducible. We
remark that p ∈ R = K[t, σ, δ] is an atom if and only if p is irreducible.

The idealizer of a left (right) ideal I in a ring R is the largest subring of R in
which I is a two-sided ideal. It is denoted Idl(I).

For any ring S, Qr
max(S) (Ql

max(S)) denotes the right (left) maximal quotient
ring of S. For a right nonsingular ring S, Qr

max(S) is always von Neumann regular
right selfinjective. If, in addition, S is an integral domain then Qr

max(S) is also
simple.

3. Preliminaries

Let us start with the following general lemma which may also be of independent
interest.

Lemma 3.1. Let f, g be nonzerodivisors in a ring R. Then the following are
equivalent:

(i) 0 −→ R/Rf
gr−→R/Rfg −→ R/Rg −→ 0 splits(where gr stands for the

right multiplication by g).
(ii) 1 ∈ Rf + gR.

(iii) 0 −→ R/gR
fl−→R/fgR −→ R/fR −→ 0 splits (where fl stands for the

left multiplication by f).
(iv) Idl(Rf) ⊆ Rf + gR.
(v) Idl(gR) ⊆ Rf + gR.

Proof. (i)⇒(ii). By hypothesis there exists a map φ : R/Rfg −→ R/Rf such
that φ ◦ gr = Id.R/Rf . Let y ∈ R be such that φ(1+Rfg) = y +Rf . We then have
(φ ◦ gr)(1+Rf) = gy +Rf = 1+Rf , i.e. gy− 1 ∈ Rf . This gives that there exists
x ∈ R such that gy + xf = 1; proving (ii).
(ii)⇒(iii). If x, y ∈ R are such that xf + gy = 1, we define φ : R/fgR −→ R/gR :
1 + fgR 7→ x + gR. This map is well define since xfg = g(1− yg) ∈ gR. Moreover
(φ ◦ fl)(u + gR) = xfu + gR = (1 − gy)u + gR = u + gR. This means that φ is a
splitting of fl, as desired.
(iii)⇒(ii) and (ii)⇒ (i) have similar proofs.
(ii)⇔(iv). Let us write 1 = xf + gy for some x, y ∈ R. If r ∈ Idl(Rf) then there
exists r′ ∈ R such that fr = r′f and we get r = xfr+gyr = xr′f +gyr ∈ Rf +gR.
This shows that Idl(Rf) ⊆ Rf + gR. The reverse implication is clear since 1 ∈
Idl(Rf).
(ii)⇔(v) is proved similarly. ¤

Theorem 3.2. Let R be an atomic left principal ideal domain. Then the fol-
lowing are equivalent:
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(i) R is a left PCI domain.
(ii) R is a left V -domain.
(iii) R = Rp + gR for every atom p ∈ R and every element g ∈ R \ {0}.
(iv) R = Rf + gR for every f, g ∈ R \ {0}.
(v) R = Rf + I for every f 6= 0 and every nonzero right ideal I.
(vi) 1 ∈ Rf + I for every f 6= 0 and every nonzero right ideal I.
(vii) 1 ∈ Rf + gR for every f, g ∈ R \ {0}.
(viii) R/Rfg ∼= R/Rf ×R/Rg for every f, g ∈ R \ {0}.
(ix) R/fgR ∼= R/fR×R/gR for every f, g ∈ R \ {0}.
(x) 1 ∈ Rp + qR for every atoms p, q ∈ R.
(xi) 1 ∈ Rp + I for every nonzero right ideal I and every atom p ∈ R.
(xii) Idl(Rp) ⊆ Rp + qR for every atoms p, q ∈ R.
(xiii) Idl(qR) ⊆ Rp + qR for every atoms p, q ∈ R.
(xiv) All products pq, where p, q are atoms, are fully reducible.
(xv) All nonunit elements of R that are nonzero are fully reducible.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii). Since R is a left V -domain, left simple modules are injective, and so
divisible. On the other hand, since R is an atomic left principal ideal domain, the
simple left modules are of the form R/Rp, where p is an atom. But then, for every
nonzero g ∈ R, g(R/Rp) = R/Rp. This yields gR + Rp = R, proving statement
(iii).
(iii)⇒(iv). Let p, r be atoms and g be a nonzero element of R. By hypothesis
we have R = Rp + gR and R = Rr + gR. Using these two equalities we have
R = (Rp + gR)r + gR = Rpr + gRr + gR = Rpr + gR. Since R is atomic, an
induction on the length of f implies that Rf + gR = R for all f, g ∈ R.
(iv)⇒(i). Rf + Rg = R implies that g(R/Rf) = R/Rf . Thus every cyclic module
R/Rf is divisible and hence injective because R is a left principal ideal domain.
Since the equivalence (iv)⇔(v) is obvious. We have thus shown that statements (i)
to (v) are equivalent.
The implication (v)⇒(vi) is clear.
The equivalences (vi)⇔(vii) ⇔. . .⇔(ix) are either obvious or direct consequences
of Lemma 3.1.
(vii) ⇒ (x) is obvious.
(x)⇒(vii) can be obtained in the same way as the implication (iii)⇒(iv).
The equivalences (x)⇔(xi) ⇔. . .⇔(xiii) are either obvious or direct consequences
of Lemma 3.1.
(xiii)⇒(xiv). Since (xiii) is equivalent to (x) it is enough to show that if 1 ∈
Rp + qR then pq is fully reducible. Therefore, suppose there exist u, v ∈ R such
that up + qv = 1. Notice that this implies that qv /∈ Rp and v /∈ Rp. Left
multiplying the equality up + qv = 1 by p we get pup + pqv = p. Hence pqv ∈
Rp ∩ Rqv = Rp′qv for some p′ ∈ R. We thus have p ∈ Rp′. Observe that, since
qv /∈ Rp, p′ cannot be a unit. Since p is an atom we conclude that Rp = Rp′. Let
us put Rp ∩ Rv = Rp′′v for some p′′ ∈ R. Note that p′′ is an atom. We then have
Rp′qv = Rp ∩ Rqv = Rp ∩ Rv ∩ Rqv = Rp′′v ∩ Rqv = (Rp′′ ∩ Rq)v. This leads to
Rpq = Rp′q = Rp′′ ∩Rq. This shows that pq is fully reducible, as required.
(xiv)⇒(xv). Let f be a nonunit element of R\0. Since R is assumed to be an atomic
principal ideal domain, f can be written as f = up1p2 · · · pn, where p1, . . . , pn are
atoms. The number n of atoms appearing in such a factorization of an element f is
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independent of the factorization chosen and is denoted l(f). We argue by induction
on the length l(f) of an element f ∈ R . If l(f) = 1, f is an atom and hence fully
reducible. If l(f) = n > 1, let us write f = f ′pn where pn is an atom and f ′ ∈ R is
such that l(f ′) = n−1. Hence f ′ is fully reducible and there exist atoms p1, . . . , pn−1

such that Rf ′ = ∩n−1
i=1 Rpi. We have Rf = Rf ′pn = ∩n−1

i=1 R(pipn) = ∩iRp′i where
the last equality comes from the fact that p1pn, . . . , pn−1pn are fully reducible by
the induction hypothesis. Thus f is fully reducible.
(xv)⇒(ii). Since R is left principal, any left ideal I of R is of the form Rf for some
element f . (xv) shows that every right ideal is an intersection of maximal right
ideals i.e. R is a left V -domain. ¤

Corollary 3.3. Let R be an atomic left and right principal ideal domain.
Then R is a left V -domain if and only if it is a right V -domain.

Proof. This is clear from the fact that statement (x) in Theorem 3.2 is left-
right symmetric. ¤

Corollary 3.4. Let R = K[t; σ, δ] be an Ore extension over a division ring
K. Then the following are equivalent:

(i) R is a left V -domain and all irreducible polynomials are linear.
(ii) All monic polynomials are Wedderburn polynomials.

4. K[t; σ, δ] as Left V -Domain.

In this section we will obtain necessary and sufficient conditions for an Ore
extension R = K[t;σ, δ] to be a left V -domain.

Lemma 4.1. For R = K[t; σ, δ] the following statements are equivalent:
(i) For all nonzero elements f ∈ R, (fR + Rf) ∩K 6= 0.
(ii) R is simple.
(iii) For all nonzero elements f, g ∈ R, (fR + Rg) ∩K 6= 0.

Proof. (i)⇒(ii). Let f be a nonzero element in R. By hypothesis there exists a
nonzero element α ∈ (Rf + fR) ∩K. Thus α ∈ RfR and we get RfR = R.
(ii)⇒(iii). If R is simple then, for nonzero elements f, g ∈ R, we have R = RgR ⊆
(fR + Rg)R. This gives that (fR + Rg)R = R and hence fR + Rg must contain a
polynomial of degree 0.
(iii)⇒(i) is clear. ¤

Let f =
∑n

i=0 ait
i ∈ R = K[t;σ, δ] be a monic polynomial (an = 1). In order

to characterize the injectivity of the cyclic left R = K[t;σ, δ]-module R/Rf , let us
denote by Cf the usual companion matrix of the monic polynomial f =

∑n
i=0 ait

i.
We thus have

Cf =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1




Considering R/Rf as a left K-vector space, the element
∑n−1

i=0 vit
i + Rf ∈ R/Rf

is represented by the vector v = (v0, v1, . . . , vn−1) ∈ Kn and the action of t on
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v is given by t.v = (σ(v0), . . . , σ(vn−1))Cf + (δ(v0), . . . , δ(vn−1)). This action,
denoted by Tf , is a pseudo linear transformation i.e. Tf is additive and we have
Tf (αv) = σ(α)Tf (v) + δ(α)v where α ∈ K. For example, Tt−a : K −→ K is given
by x 7→ σ(x)a + δ(x). Notice that Tt = δ and, in case δ = 0, Tt−1 = σ. For
g =

∑l
i=0 ajt

j ∈ R and f ∈ R, we also consider g(Tf ) =
∑l

i=0 aj(Tf )j . For more
details on pseudo linear transformations the reader is referred to [L]. Let us now
mention the following technical result to be used later.

Lemma 4.2. Let R = K[t; σ, δ] be an Ore extension over a division ring K.
Then for f ∈ R, and 0 6= y ∈ K, f(δ)(y) = f(0y)y.

Proof. Evaluating f(t)y at 0 and using the product formula stated in the
Notations and Definitions (Section 2), we get (f(t)y)(0) = f(0y)y. On the other
hand the evaluation at 0 is also the independent term f(δ)(y) of the polynomial
f(t)y. This completes the proof. ¤

Lemma 4.3. Let f be a nonzero element in R = K[t; σ, δ]. Then the following
are equivalent:

(i) R/Rf is injective.
(ii) g(Tf ) is onto for all nonzero polynomials g ∈ R.

Proof. (i)⇔(ii). Since R is a left principal domain, the injectivity of R/Rf is
equivalent to its divisibility. Now, the divisibility of R/Rf is equivalent to the fact
that for every nonzero g ∈ R, g.R/Rf = R/Rf. This means that the action of
g(t). = g(t.) is onto. ¤

Let us recall that the inner σ-derivation on K induced by a, denoted δa,σ is
defined by δa,σ(x) = ax− σ(x)a, for x ∈ K.

Lemma 4.4. Let f, a be elements in R and K respectively. Then
(a) a ∈ fR + Rt iff a ∈ imf(δ).
(b) Rt + fR = R iff f(δ) is onto.
(c) R/Rt is divisible iff for any f ∈ R, f(δ) is onto. In particular, if δ = 0,

R/Rt is never divisible.
(d) R/R(t− a) is divisible iff for any f ∈ R, f(δ − δa,σ) is onto.

Proof. (a) Suppose a ∈ fR + Rt and let g, h ∈ R be such that fg + ht = a.
Comparing independent terms on both side we get f(δ)(g0) = a where g0 stands
for the independent term of g. Conversely, suppose there exists c ∈ K such that
f(δ(c)) = a. This implies that the independent term of f(t)c is a, i.e. f(t)c−a ∈ Rt,
as required.
(b) Since Rt + fR = R if and only if K ⊆ Rt + fR, the statement (a) above gives
us immediately the conclusion.
(c) We know R/Rt is divisible if and only if for any f ∈ R, fR + Rt = R and (b)
above give us the first statement. The particular case is clear.
(d) This is a consequence of (c) using the fact that for any a ∈ K one has K[t; σ, δ] =
K[t− a; σ, δ − δa,σ] ¤

Let us give some examples:

Example 4.5. A well known example of Cozzens (cf.[C] or [CF], chapter 5)
is the following: let k be a commutative field and δ be derivation of k. Assume that
k is differentially closed. Then R = k[t; Id., δ] is a left and right V -domain.
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Of course, not every simple skew polynomial ring over a division ring is a V -
domain.

Example 4.6. Let K = k(x) be the field of rational functions over a field k
of characteristic zero. R = k(x)[t; Id., d/dx] is a simple noetherian domain. Since
d/dx is not onto on k(x), R/Rt is not injective (Cf. Lemma 4.4) and hence R is
not a left V -domain .

Theorem 4.7. Assume R = K[t;σ, δ] is a left V -domain. Then
(1) For any a, b, c ∈ K, the (σ, δ) metro equation

bx− σ(x)a− δ(x) = c

has a solution in K.
(2) For any n ∈ N, the map δ + nσ is onto.
(3) EndR(R/Ra) ∼= End(R/aR) . These rings are division rings if and only

if a ∈ R is an atom.

Proof. (1) Since R is a left V -domain, we have for all a, b ∈ R, t − b divides
R/R(t − a) i.e. R(t − a) + (t − b)R = R. So, in particular, for any c ∈ K there
exists u, v ∈ R such that u(t − a) + (t − b)v = c. Dividing v on the right by t − a
and writing v = q(t − a) + d for some q ∈ R and d ∈ K. We may thus assume
that v ∈ K. Comparing the degrees we then conclude that u ∈ K as well. The
above equality gives us that (u + σ(v))t + δ(v) − ua − bv − c = 0. This leads to
σ(v)a + δ(v)− bv − c = 0. This shows that v is a solution of the metro equation.
(2) This follows from (1) by putting a = n and b = 0.
(3) Let us recall that Idl(aR) and Idl(Ra) stand for the idealizers of aR and
Ra respectively. It is well known and easy to prove that if R is a domain then
Idl(Ra)/Ra ∼= Idl(aR)/aR. This shows that EndR(R/Ra) ∼= EndR(R/aR). Schur’s
lemma and the fact that R is a left principal ideal domain imply that EndR(R/Ra)
is a division ring if and only if a is an atom.
Conversely if a = p1...pn, n > 1, is a product of atoms then Theorem 3.2 (viii)
implies that R/Ra is a product of simple modules R/Rpi, 1 < i ≤ n but R/Ra is
not simple. Hence End(R/Ra) cannot be a division ring. ¤

Our methods give criteria for certain cyclic left modules to be injective modules.
B. Osofsky considered injective modules over skew polynomial rings k[t; σ], where
k is a commutative field [Os]. We conclude this section with a generalization of
one of her results to the case when k is a division ring.

Proposition 4.8. Let σ be an endomorphism of a division ring K and let R
denote the skew polynomial ring R = K[t; σ]. Then R/R(t − 1) is injective if and
only if for any p ∈ K[t; σ], p(σ) is onto.

Proof. It is clear from the paragraph preceding Lemma 4.2 that Tt−1 = σ.
Lemma 4.3 then yields the desired result. ¤

5. K[t; σ, δ] as a V -Domain With Unique Simple Left Module

We will now give characterizations of Ore extensions R = K[t;σ, δ] which are
left V -domains and have a unique simple left module (up to isomorphisms). This
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will explain some features of examples given by Cozzens in ([C]). We assume
throughout the section that δ 6= 0.

First, we give general characterizations of Ore extensions R having a unique
simple left R-module.

Proposition 5.1. Let R = K[t;σ, δ] be an Ore extension over a division ring
K where δ 6= 0. Then the following are equivalent:

(i) R admits, up to isomorphisms, a unique simple left module.
(ii) Every monic irreducible polynomial is of the form t − 0y for some y ∈

K \ {0}.
(iii) For any nonconstant polynomial f ∈ R, Ker(f(δ)) 6= 0, that is, each

linear differential equation over K has a nonzero solution in K.
(iv) For any irreducible polynomial p, Ker(p(δ)) 6= 0.

Proof. (i) ⇒ (ii). Every simple left R-module is of the form R/Rp for some
irreducible polynomial p. The uniqueness of the isomorphic class of simple left R-

modules gives R/Rp
ϕ∼= R/Rt. Comparing the dimensions as left K vector spaces we

see that p = t−a for some a ∈ K. Write ϕ(1+Rp) = ϕ(1+R(t−a)) = y+Rt, y ∈ R.
Note that y 6= 0. Then (t−a)y ∈ Rt i.e. σ(y)t+δ(y)−ay ∈ Rt and so δ(y)−ay = 0.
Since y 6= 0 we obtain that p = t− a = t− δ(y)y−1.
(ii) ⇒ (iii). This is clear since, by (ii), every nonconstant polynomial, say f ∈ R,
has a right factor of the form t− 0y. Lemma 4.2 then implies that f(δ)(y) = 0.
(iii) ⇒ (iv) is obvious.
(iv) ⇒ (i). Since any polynomial is a product of irreducible factors, we conclude
that for any f ∈ R there exists y 6= 0 such that f(δ)(y) = 0. By Lemma 4.2 we get
that f(0y) = 0 and this shows that t− 0y divides f on the right. In particular, the
irreducible polynomials are of the form t − 0y. Since R/R(t − 0y) ∼= R/Rt under
the mapping 1 7→ y, we conclude that the left simple modules are all isomorphic to
R/Rt. ¤

Corollary 5.2. Suppose R = K[t; σ, δ] has a unique simple left module (up
to isomorphisms), then K = ∆(0) = {δ(x)x−1|x ∈ K \ {0}}.

Proof. This is clear from the above proposition 5.1 (ii). ¤

Under the hypothesis that R admits a unique simple left R-module the following
lemma gives a criterion for determining when R is a left V -domain.

Lemma 5.3. Suppose R = K[t; σ, δ] has a unique simple left R-module. Then
the following are equivalent:

(i) R is a left V -domain.
(ii) δ is onto.
(iii) For every c ∈ K, (t− c)(δ) is onto.

Proof. (i)⇒(ii). If R is a left V -domain, Theorem 4.7 shows that δ is onto.
(ii)⇒(i). By hypothesis R admits a unique simple left module and δ is onto. Let us
first show that Rt+ tR = R. Since every f ∈ R can be written as f = qt+a, q ∈ R,
a ∈ K, it is enough to show that K ⊆ Rt + tR. Let a be an element in K. Since
δ is onto, there exists b ∈ K such that δ(b) = a. So, we get tb− σ(b)t = δ(b) = a ∈
Rt+ tR. This yields that t divides the simple left R module R/Rt. Hence t divides
all the simple modules. In other words tR+Rp = R for any irreducible polynomial
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p (which we know is linear). This also shows that any irreducible p divides the right
module R/tR i.e. (R/tR)p = R/tR. Let q ∈ R be another irreducible polynomial.
By hypothesis, we have R/Rt ∼= R/Rq and hence also R/qR ∼= R/tR (Cf. [Co1]).
So p divides the R-module R/qR i.e. (R/qR)p = R/qR. This gives Rp + qR = R
for every irreducible polynomials p, q ∈ R. Theorem 3.2 shows that R is a left
V -domain.
(ii)⇔(iii). By hypothesis, R has a unique simple left R-module (up to isomorphism)
hence for any c ∈ K, R/Rt ∼= R/R(t−c). As noticed in the proof of (ii)⇐ (i) above,
this implies that R/tR ∼= R/(t − c)R for all c ∈ K. Now, Lemma 4.4 shows that
(t− c)(δ) is onto if and only if R = (t− c)R + Rt which is equivalent to saying that
t divides R/(t − c)R ∼= R/tR. Using Lemma 4.4 again we conclude that δ is onto
if and only if (t− c)(δ) is onto. ¤

Let us recall that two matrices A,B ∈ Mn(K) are (σ, δ) similar, denoted by B =
AP , if there exists an invertible matrix P ∈ Mn(K) such that B = σ(P )AP−1 +
δ(P )P−1.

Theorem 5.4. Let R = K[t; σ, δ] be an Ore extension over a division ring.
Then the following are equivalent:

(i) R is a left V -domain with a unique simple left module.
(ii) Every monic polynomial is Wedderburn and K = ∆(0).
(iii) Every irreducible monic polynomial is of the form t − δ(y)y−1 for some

y ∈ K \ {0} and every quadratic polynomial is Wedderburn.
(iv) Every monic nonconstant linear differential equation has a nonzero solu-

tion and (t− c)(δ) is onto for every c ∈ K.
(v) Every square matrix over K is (σ, δ) similar to a diagonal matrix with

coefficients in ∆(0).
(vi) Every square matrix over K is (σ, δ) similar to the zero matrix of the same

size.
(vii) For every n ≥ 1, for all A, B ∈ Mn(K), A is (σ, δ) similar to B.

Proof. (i)⇒(ii). By Corollary 5.2 K = ∆(0). Let f be a monic polynomial. By
Theorem 3.2 and Proposition 5.1 we can write Rf = ∩n

i=1R(t − ai). This shows
that f is Wedderburn.
(ii)⇒(iii). Since Wedderburn polynomials split into linear factors, it is clear by (ii)
that the monic irreducible polynomials are linear and hence they are of the form
t− δ(y)y−1, for some y ∈ K \ {0}.
(iii)⇒(iv). Let g(δ) = 0 be a monic linear differential equation. The corresponding
polynomial g(t) has a right factor of the form t− δ(y)y−1, for some y ∈ K \ {0}. In
this case, Lemma 4.2 shows that g(δ)(y) = 0. Let x be an element of K. To show
that (t− c)(δ) is onto we produce an element a such that (δ)(a)− ca = x. Consider
the polynomial f(t) = (t − δ(x)x−1)(t − c). By hypothesis f is a Wedderburn
polynomial and hence f has a right root d different from c. By invoking the product
formula we get 0 = f(d) = (dd−c − δ(x)x−1)(d − c).and so dd−c − δ(x)x−1 = 0.
Our hypothesis implies that there exists y ∈ K \ {0} such that d = 0y. We then
obtain 0δ(y)−cy = 0x. This implies (0δ(y)−cy)x−1

= (0x)x−1
= 01 = 0. This gives

0x−1(δ(y)−cy) = 0. Hence, x−1(δ(y) − cy) ∈ Kerδ and so, δ(y) − cy = xb for some
b ∈ Kerδ. Since c 6= 0y, b cannot be zero. Putting a = yb−1 we get δ(a)− ca = x.
This shows that (t− c)(δ) is onto.
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(iv)⇒(i). Proposition 5.1 shows that R = K[t; σ, δ] admits a unique simple left
R-module (up to isomorphisms) and that the irreducible polynomials are linear.
Lemma 5.3 implies that R is indeed a left V -domain, as desired.
(ii) ⇔(v). This equivalence is clear since it has been proved in [LLO] that a matrix
is (σ, δ) diagonalizable if and only if the invariant factor of the highest degree is
Wedderburn.
(v)⇔(vi). An easy computation shows that if y1, . . . , yn are nonzero elements from
K, then diag(0y1 , . . . , 0yn) = (0n)P where P = diag(y1, . . . , yn) and 0n denotes the
square zero matrix of size n× n. This yields the equivalence.
(vi)⇔(vii). This is obvious because of the transitivity of the (σ, δ)-similarity.

¤

Remarks 5.5. a) The conditions (iii) and (iv) in the above theorem do not
explicitly refer to σ. This may, mistakenly be looked as a condition that is inde-
pendent of σ. But we remark that δ is a σ derivation (with a unique σ).
b) Let us briefly describe Resco’s result (Cf.[R]) and indicate how it can be imitated
in order to give another proof of the equivalence (i) ⇔ (vii) in Theorem 5.4 above.
Let K be a division ring with center k and T = K[t](k[t])−1 = K ⊗ k(t) be the
central localization of K[t]. A square matrix A ∈ Mn(K) determines a structure
of left K[t]-module on the space of rows nK via t.(v1, . . . , vn) = (v1, . . . , vn)A and
α.(v1, . . . , vn) = (αv1, . . . , αvn). This action can be extended into a left T -module
structure for nK if and only if for any f(t) ∈ k[t], f(A) is invertible. Such a
matrix is called totally transcendental. Resco (Cf.[R] or P.M.Cohn [Co2] Theorem
8.4.9 p. 391) showed that T is a left (and right) V -domain if and only if any two
totally transcendental square matrices of the same size are similar (with Cohn’s
terminology K is said to be matrix homogeneous). Resco’s result was used by
Faith and Menal [FM] to construct an example of a left noetherian left annihilator
ring which is not left artinian. In fact we can use similar methods as the ones
used by Resco to give another proof of a part of the above theorem. In our case if
R = K[t; σ, δ] is simple we don’t need localization and for any matrix A ∈ Mn(K),
we can define a left R-module structure on the space nK via:

t.(v1, . . . , vn) = (σ(v1), . . . , σ(vn))A + (δ(v1), . . . , δ(vn)).

Let us denote this left R-module by (nK,A). As in Resco’s paper one can easily
show that every left R-module of finite length is induced by a square matrix (the
proof is even simpler since we don’t have to check that the matrix is totally transcen-
dental). Adapting the Resco’s arguments we then find back the equivalence (i) ↔
(vii) in Theorem 5.4 above. Of course, in this circumstances, the unique simple left
R = K[t; σ, δ]-module is K with the R-module structure given by f(t).x = f(δ)(x),
for x ∈ K.

6. K[t; σ, δ] as Both Left and Right V -domain

We will now examine the right structure of the Ore extension R = K[t;σ, δ].
If σ is an automorphism then R is a right and left principal ideal domain. Hence,
in this case, R is a right V -domain if and only if it is a left V -domain. So we will
assume from now on that σ is not onto and study conditions that make R a left
and right V -domain. Let us recall that R is a 2-fir. This implies, in particular,
that for any atom p ∈ R, the ring EndR(R/pR) is a division ring and hence R/pR
is indecomposable. Recall that, for a 2-fir R, if fR ∩ gR 6= 0, f, g ∈ R then there
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exists h ∈ R such that fR + gR = hR. We remark that R/Rf is divisible for all
f 6= 0 if and only if R/fR is divisible for all f 6= 0 as both statements are equivalent
to Rf + gR = R for every f, g ∈ R. Let {ai}i∈I be a basis of K over σ(K) i.e.
K = ⊕i∈Iaiσ(K). We may assume that 1 ∈ {ai | i ∈ I}. Let us put a1 = 1. We say
that a right ideal I of R is closed if for any right ideal J such that I is essential in
J then I = j.

Proposition 6.1. Let R = K[t;σ, δ] be an Ore extension over a division ring
K such that σ is not onto. Then

(1) For every f ∈ R, R/fR is not uniform.
(2) For every 0 6= f ∈ R, R/fR is not injective.
(3) For every a ∈ R, aR is closed.

Proof. As above let us fix a basis {ai}i∈I of K considered as a right vector
space over σ(K).
(1). If f = 0, then R/fR = R contains the direct sum ⊕i∈IaitR and hence R is
not uniform. If f is monic and ai 6= 1 it is easy to check that the sum fR + aifR
is direct. Thus fR ⊕ aifR ⊆ R and R ∼= aifR embeds in R/fR. Thus R/fR is
not uniform because R is not uniform. If 0 6= f is not monic, write f = ag with g
monic, a ∈ K. We then get R/fR = aR/(agR) ∼= R/gR which is not uniform by
the previous case.
(2). We proceed by induction on the numbers of factors in a factorization of f . If
f is an atom we know, by the remark made at the beginning of this section, that
R/fR is indecomposable. If we assume that R/fR is injective we conclude that it
must be uniform (Cf.[La4], Theorem 3.52). This contradicts (1).

Assume now that f is not an atom and that R/fR is injective. If R/fR is
indecomposable it will be uniform which again contradicts (1). Thus we can write
R/fR = x1R+fR

fR ⊕ x2R+fR
fR for some x1, x2 ∈ R such that each direct summand is

not zero. If either x1R∩fR = 0 or x2R∩fR = 0, then the corresponding summand
is isomorphic to RR and, as a direct summand of the injective module R/fR, is
injective itself. This contradiction shows that xiR ∩ fR 6= 0, i = 1, 2. By the
property of 2-firs recalled at the beginning of this section, we get xiR + fR = yiR,
for some y1, y2 ∈ R. Let us write f = yizi for i = 1, 2. we obtain R/fR =
y1R/fR ⊕ y2R/fR ∼= R/z1R ⊕ R/z2R. Since the direct summands y1R/fR and
y2R/fR are both nonzero, y1 and y2 are both nonunits, so z1 and z2 have shorter
factorizations than f . As direct summands of the injective module R/fR, the
modules R/ziR are injective. Our induction hypothesis then gives the desired
contradiction.
(3) If aR is not closed then aR is essential in some right ideal I 6= aR. We claim
that there exists b ∈ R such that aR is essential in bR. For i ∈ I\aR the essentiality
of aR in I shows that iR ∩ aR 6= 0. By the 2-fir property of R, iR + aR = bR, for
some b ∈ R. Then aR ⊂ bR ⊆e I, proving our claim.
Let us write a = bc, where c not a unit. Then bcR ⊆e bR and so cR ⊆e R. If p
is an atomic left factor of c we have cR ⊆ pR ⊆ R. So, pR ⊆e R. Choose q /∈ pR.
By essentiality of pR in R, pR ∩ qR 6= 0 and then, by the property of 2-fir, there
exists h ∈ R such that pR + qR = hR. So, pR ⊂ hR; write p = hr, for some r ∈ R.
Since q /∈ pR, pR is strictly contained in hR, i.e. r is not a unit. Thus h is a unit
and we have pR + qR = R, for any q /∈ pR. This shows that pR is maximal. Thus
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R/pR is simple and hence uniform. Part (1) then yields that σ must be onto. This
contradiction shows that aR is closed. ¤

Theorem 6.2. Let R = K[t;σ, δ] be a left V -domain. Then the following
statements are equivalent:

(i) There exists an element f ∈ R such that R/fR is injective.
(ii) σ is onto.
(iii) R is a right principal Ore V -domain .
(iv) for every nonzero f ∈ R, R/fR is injective.
(v) There exists an irreducible polynomial f ∈ R such that R/fR is uniform.
(vi) There exists an irreducible polynomial f ∈ R such that R/fR is CS.
(vii) R is a right PCI domain.
(viii) Qr

max(R) is directly finite.

Proof. (i)⇒(ii) follows by Proposition 6.1.
(ii)⇒(iii) Since R is both a right and left principal Ore domain when σ is onto, the
implication (ii)⇒(iii) is due to the symmetry of some of the statements in Theorem
3.2.
(iii)⇒(iv). Since R is a right principal ideal domain, a right R-module is injective
if and only it is divisible. Since R is a left V -domain, we have Rf + gR = R for all
f, g ∈ R (Cf. Theorem 3.2) and thus R/fR is divisible for all f ∈ R.
The implication (iv)⇒(i) is obvious.
(iv)⇒(v). This is clear since injective indecomposable modules are uniform.
The equivalence (v)⇔(vi) is true because an indecomposable module is CS if and
only if it is uniform.
(v)⇒(vii). By Proposition 6.1, σ is onto. Theorem 3.2 shows that for all f, g ∈
R \ {0}, Rf + gR = R i.e. R/gR is divisible for all nonzero g ∈ R. Since σ is onto,
R is a right principal ideal domain. Thus, R/gR is injective for all 0 6= g ∈ R, as
required.
(vii)⇒(viii). If R is a right PCI-domain, Qr

max(R) is a division ring.
(viii)⇒(ii). Let us first show that nonzero elements of R are left invertible in
Q := Qr

max(R). This is part of folklore; If 0 6= a ∈ R, there exists q ∈ Q such that
a = aqa. If qa − 1 = 0, we are done. If not then 0 6= qa − 1 ∈ rannQa := {x ∈
Q | ax = 0}. Since R ⊂e Q, we get that rannRa 6= 0. This is impossible since R is
a domain.
Now, if x ∈ Q, there exists an essential right ideal E such that 0 6= xE ⊆ R. In
particular there exists an element e ∈ R such that 0 6= xe ∈ R. By the above xe
is left invertible in Q, i.e. there exists q ∈ Q such that qxe = 1. Direct finiteness
of Q implies that xeq = 1. This shows that every nonzero element of Q is right
invertible and hence Q is a division ring. This shows that R is left and right Ore.
Hence σ is onto. ¤

Remark 6.3. Damiano showed that a right PCI-domain R which is left co-
herent is a left PCI-domain([D]). However his proof contains an error. He claims,
by invoking a result in Stenstrom’s book ([S] XI, Corollary 3.2 ) that the right
maximal quotient ring of R is flat as right R-module. In fact the right maximal
quotient ring is flat as a left R-module. This leads Damiano to the wrong conclu-
sion that the right and left maximal quotient ring of R are isomorphic and R must
be a left Ore domain.
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Since a polynomial ring R = K[t; σ, δ] is always a semifir, it is both left and
right coherent. If correct, Damiano’s theorem would imply that if R = K[t; σ, δ] is
a left Ore V -domain then it is also a right Ore domain. Consequently σ would be
onto. We do not have any example when K[t; σ, δ] is a left V -domain with σ not
onto.
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