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Abstract

Applications of nonnegative matrices have been of immense interest to both social and
physical scientists, particularly to economists and statisticians. This paper considers the
question as to when a nonnegative singular matrix can be decomposed as a product of
nonnegative idempotents analogous to the well-known result for any arbitrary matrix. It
is shown that (i) all singular nonnegative matrices of rank < 3, (ii) all singular nonnegative
matrices that have a nonnegative von Neumann inverse, (iii) (0− 1) nonnegative definite
matrices and (iv) periodic matrices, have the property that they decompose into a product
of nonnegative idempotents. An example is given that, in general, this need not be true for
singular matrices of rank 3 or higher, including stochastic or symmetric matrices. Besides
computational techniques, a recent result that a singular nonnegative quasi-permutation
matrix is a product of nonnegative idempotents plays a key role in the proofs of the
results.

1 Introduction

It is well-known that singular matrices with coefficients in a field can be presented as a product
of idempotent matrices (cf.Erdos [8]). Different generalizations have been obtained for matri-
ces with entries in noncommutative division rings or other specific types of rings (cf.Laffey,
O’Meara-Hanna, Alahmadi-Jain-Lam-Leroy [2], [15], [4]). Nonnegative matrices have found
applications in a number of areas including Statistics and Economics. The reader is directed
to the classic books on nonnegative matrices (see, for example, Chapter 7 in Bapat-Raghavan
[5], Chapter 9 in Berman-Plemmons [7] on Leontief models in Economics, and the book of
Seneta [16] on stochastic matrices and Markov chains). The importance of applications of non-
negative matrices to both physical and social sciences can hardly be over emphasized. Thus a
natural question is to ask if the above stated result of Erdos for the decomposition of an arbi-
trary matrix into idempotents holds for nonnegative matrices when we ask that idempotents
are also nonnegative. In other words , is it true that a nonnegative singular matrix can be
represented as a product of nonnegative idempotent matrices? Recent results tend towards a
positive answer. For example it was shown shown recently in [1], that rank one nonnegative
real matrices can indeed be decomposed as products of nonnegative real idempotent matrices.
In this paper we will show that the rank one and rank two nonnegative real matrices are always
product of nonnegative idempotent matrices. The technique is easier than the one used in
[1], but we don’t get the information about the number of nonnegative idempotent matrices
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needed as obtained in [1]. We will also prove that, without any restrictions, any nonnega-
tive matrix A having a nonnegative von Neumann inverse (i.e. a nonegaitive matrix B such
that A = ABA) is a product of nonnegative idempotents. Finally, we will provide examples
of singular (doubly stochastic) matrices of rank 3 that cannot be presented as a product of
nonnegative idempotent matrices. We also provide two new families of nonnegative matrices
for which the decomposition is possible, namely, (i) the periodic matrices and (ii) the singular
nonnegative definite (0-1)-matrices.

2 Rank one and two

Throughout the paper R+ is the set of nonnegative real numbers. Let us first remark that a
matrix A ∈Mn(R) (resp. in Mn(R+)) is a product of (resp. nonnegative) idempotent matrices
if and only if the same is true for the matrix PAP t where P is a permutation matrix.

Let us start with the following lemma. Part (a) can be found in our previous paper [3].

Lemma 1 (a) If B ∈ Mn×n(R+) is an n × n matrix which is a product of (resp. nonneg-

ative) idempotents, then the same is true for the matrix

(
B C
0 0

)
where C ∈ Mn×1(R)

(resp. C ∈Mn×1(R+)) and the other blocks elements are of appropriate sizes.

(b) Any strictly upper triangualr matrix T ∈ Mn(R) (resp. T ∈ Mn(R+)) is a product of
(resp. nonnegative) idempotent matrices.

(c) If n > 1 and a matrix A ∈Mn(R) (resp. A ∈Mn(R+)) has only one nonzero row, then
it is a product of (resp. nonnegative) idempotent matrices.

(d) Any singular matrix A ∈M2(R+) is a product of nonnegative idempotents.

(e) If A ∈M3(R+) has its last row and last column zero, then it is a product of nonnegative
idempotents.

(f) If A ∈ Mn(R) (resp. A ∈ Mn(R+)), n ≥ 3, has all its ith rows and columns zero
whenever i ≥ 3, then A is a product of (resp. nonnegative ) idempotent matrices.

Proof. (a) This is classic and can be deduced from the identity:(
B C
0 0

)
=

(
In−1 C

0 0

)(
B 0
0 1

)
,

where In−1 is the n− 1× n− 1 identity matrix.
(b) This is an easy consequence of part (a) above.

(c) If n = 2, we write A =

(
a b
0 0

)
. When a = 0, A is strictly upper triangular and when

a 6= 0 we can write

A =

(
a b
0 0

)
=

(
0 1
0 0

)(
1 0
a 0

)(
1 a−1b
0 0

)
.

This is the desired product of (nonnegative) idempotent matrices. The general case (n > 2)
is then easily obtained using part (a) above and an induction.

(d) If A ∈ M2(R+) is nonzero of rank 1, we may assume, after permuting the rows and
columns if necessary, that its second row L2 is is a nonnegative multiple of its first one L1 and
we have L2 = αL1, where α ∈ R+. We then have

A =

(
L1

L2

)
=

(
1 0
α 0

)(
L1

0

)
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The first matrix of the above product is a nonnegative idempotent. The part (c) of this lemma
shows that the second matrix is also a product of nonneagtive idempotent matrices.

(e) Part (a) and (d) above show that we only have to consider the case when the 2 × 2

top left corner submatrix

(
a b
c d

)
of A is invertible. Let us first consider the case when c 6= 0

then we have a b 0
c d 0
0 0 0

 =

0 b ac−1

0 d 1
0 0 0

1 0 0
0 1 0
c 0 0

 .

The first matrix on the right hand side is a product of nonnegative matrices thanks to part
(a) and (d) above, the second factor is a nonnegative idempotent.

Now, if c = 0 and b 6= 0 we can permute the two first rows and the two first columns and
apply what we have just done i.e. when the case when c 6= 0. Hence we only have to consider
the case when b and c are both zero. We can then writea 0 0

0 d 0
0 0 0

 =

0 0 1
0 d 0
0 0 0

1 0 0
0 1 0
a 0 0


This completes the proof.

(f) This conclusion is a direct consequence of the part (e) and (a) above.
We now consider the case of an n×n nonnegative matrix of rank one. It is known (cf. [1])

that these matrices are product of nonnegative idempotent matrices. We offer here a shorter
proof of this fact.

Proposition 2 Let A ∈ Mn(R+), n > 1, be a nonnegative matrix of rank 1. Then A is a
product of nonnegative idempotent matrices.

Proof. Of course, we may assume A 6= 0. If E ∈ Mn(R+) is any idempotent matrix and P
is a permutation matrix, PEP t ∈Mn(R+) is also an idempotent matrix. This shows that we
may assume that the first row of the matrix A is nonzero and hence, for 2 ≤ j ≤ n, there exist
αj ∈ R+ such that Lj , the jth row of A, is such that Lj = αjL1. We thus have

A =


L1

L2

. . .
Ln

 =


1 0 . . . 0
α2 0 . . . 0
α3 0 . . . 0
. . . . . . . . . . . .
αn 0 . . . 0




L1

0 . . . 0
. . .

0 . . . 0

 .

The first matrix on the right hand side is nonnegative a idempotent matrix and the last matrix
is a product of nonnegative idempotents according to the above lemma 1 (c).

Let us now turn to the case of rank two nonnegative matrices. The following lemma will
be useful.

Lemma 3 Let W ⊂ Rn be a real vector space of dimension two. Then for any finite subset
S ⊂ (R+)n of W with cardinality at least two, there always exist two elements s1, s2 ∈ S such
that all the vectors of S are positive combinations of s1 and s2.

Proof. We use an induction on the cardinality of S, denoted by |S|. If |S| = 2 there is
nothing to prove. So assume the result holds for such a subset S with |S| = n and let us
show that it is also true for S ∪ {s}. We know that there exist s1, s2 ∈ S such that for
every t ∈ S we can write t = αts1 + βts2, where αt, βt are nonnegative real numbers. Since
W is of dimension two there exists a linear relation between s1, s2 and s. In fact, it easily
seen that we can always write one of these three vectors as a nonnegative linear combination
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of the others. If s is a nonnegative linear combination of s1 and s2 we conclude that the
elements s1 and s2 satisfy the conditions of the lemma for S ∪ {s}. If s1 is a nonnegative
linear combination of s and s2, say s1 = λs+ µs2, the pair s, s2 is such that for any t ∈ S, we
have t = αts1 + βts2 = αt(λs+ µs2) + βts2 = αtλs+ (αtµ+ βt)s2 and the elements s and s2
will satisfy the conditions of the lemma. The last case, when s2 is expressed as a nonnegative
linear combination of s and s1 is obtained in the same way.

Theorem 4 Let A ∈Mn(R)+, n > 2, be a nonnegative singular matrix of rank 2. Then A is
a product of nonnegative idempotent matrices.

Proof. Conjugating the given matrix A by a permutation matrix, we see that we may permute
the rows as well as columns of A and so assume that the first two rows of A are linearly
independent and generate all the other rows. Thanks to the above lemma 3 we may assume
that for any i ≥ 3 there exist αi, βi ∈ R+ such that Li = αiL1 + βiL2. We can thus write

A =


L1

L2

. . .
Ln

 =


1 0 0 . . . 0
0 1 0 . . . 0
α1 β1 0 . . . 0
. . . . . . 0 . . . 0
αn βn 0 . . . 0



L1

L2

0
. . .
0

 .

The first matrix of this last product is already a nonnegative idempotent matrix. Considering
the columns (C1, C2, . . . , Cn) of the second factor and making use of Lemma 3 we know that
there exist 1 ≤ i < j ≤ n such that the columns of this matrix are nonnegative linear
combinations of the Ci and Cj . Let us write, for every 1 ≤ k ≤ n, Ck = λkCi + µkCj with
λk, µk ∈ R+. We then have

L1

L2

0
. . .
0

 = (C1, C2, . . . , Cn) = (Ci, Cj , 0, . . . , 0)B,

where the matrix B has the following shape: its rows are all zeros except the first two rows. The
first row is (λ1, λ2, . . . , 1, λi+1, . . . , λn) and the second row of B is (µ1, µ2, . . . , 1, µj+1, . . . , µn).
Remarking that the first matrix (Ci, Cj , 0, . . . , 0) have all its rows and columns zero except for
the two first ones, the point (f) in Lemma 1 shows that this matrix is a product on nonnegative
idempotent matrices. We now start an induction on n ≥ 3. If n = 3 and if C3 is a nonnegative
linear combination of C1 and C2 (this is the case when i = 1, j = 2) then B is a nonnegative
idempotent. So suppose n = 3 and i = 2, j = 3. In this case we have

B =

λ1 1 0
µ1 0 1
0 0 0

 =

0 1 0
0 0 1
0 0 0

 0 0 0
λ1 1 0
µ1 0 1

 .

The second matrix of the right hand side is a nonnegative idempotent matrix and the first
one is an upper triangular matrix and hence a product of nonnegative idempotent matrices
as shown in Lemma 1(b). Interchanging the two first rows and columns of the matrix B
corresponding to case i = 1, j = 3 we get the following matrix C and its factorization:

C =

µ2 0 1
λ2 1 0
0 0 0

 =

0 0 1
0 1 0
0 0 0

 0 0 0
λ2 1 0
µ2 0 1

 .

The last matrix is idempotent and the first matrix is a product of nonnegative idempotent
matrices thanks to Lemma 1 (a). This shows that our matrix B is always a product of
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nonnegative idempotent matrices when n = 3. This also shows that in fact any 3× 3 matrix
of rank two is a product of nonnegative idempotent matrices.

Let us now consider the factorization of an n × n matrix of rank two when n ≥ 4. The
above discussion shows that it is enough to consider the case of a matrix B ∈Mn(R+) having
its two last rows equal to zero. In fact, this case is an easy consequence of the induction
hypothesis and part (a) in Lemma 1.

We now give an example of a nonnegative singular matrix that cannot be written as a
product of nonnegative idempotent matrices.

Example 5 Consider the 4× 4 matrix

Aα :=


α α 0 0
0 0 α α
α 0 α 0
0 α 0 α

 , where α ∈ R+, α 6= 0.

If Aα = E1 · · ·En is a product of nonnegative idempotent matrices E1, E2, . . . , En ∈
M4(R+), we get that Aα = AαEn. For i = 1, 2, 3, 4, let us write (xi, yi, zi, ti) for the ith

row of the matrix En. Equating the entries of the rows on both sides we get, after simplifica-
tion,

For the first row 1 = x1 + x2, 1 = y1 + y2, 0 = z1 + z2 and 0 = t1 + t2.
For the second row 0 = x3 + x4, 0 = y3 + y4, 1 = z3 + z4 and 1 = t3 + t4
For the third row 1 = x1 + x3, 0 = y1 + y3, 1 = z1 + z3 and 0 = t1 = t3
For the fourth row 0 = x2 + x4, 1 = y2 + y4, 0 = z2 + z4 and 1 = t2 + t4
Since all the real numbers xi, yi, zi, ti must be nonnegative it is easy to conclude from the

above equations that the only solution will be En = Id. This shows that the matrix Aα does
not have a presentation as product of nonnegative idempotent matrices. In fact considering
α = 1/2 we remark that A1/2 is a doubly stochastic matrix. Considering the matrix A1/2A

T
1/2

we may also conclude that even a nonnegative symmetric stochastic matrix cannot always be
presented as the product of nonnegative idempotent matrices.

3 Nonnegative von Neumann inverse

Before we begin let us state a theorem that plays a key role in this section. Firstly, we need
to give a definition.

Definition 6 A square matrix A ∈Mn,m(R+) is a quasi-permutation matrix if each row and
each column has at most one nonzero element. A partitioned square matrix A = (Aij) with n2

blocks is a quasi-permutation by block matrix if there exists a permutation σ ∈ Sn such that
the only nonzero blocks of the partition are Ai,σ(i). Note that the blocks Aij, i 6= j, are possibly
rectangular blocks but the diagonal blocks Aii are square matrices. Furthermore, if each block
Aij is a quasi-permutation matrix then A itself is a quasi-permutation matrix.

Theorem 7 (cf. [2], Theorem 7) Let A be a singular nonnegative quasi-permutation matrix.
Then A is a product of nonnegative idempotent matrices.

It was shown in [3] that a nonnegative singular matrix A ∈Mn(R+) having a nonnegative
von Neumann inverse (i.e. a matrix B ∈ Mn(R+) such that A = ABA) can be written as a
product of nonnegative idempotent matrices. However, there was an implicit assumption that
the block matrices of rank one appearing in A were square matrices. But we will show that
this assumption was not necessary.Let us first recall the form of nonnegative matrices having
nonnegative von Neumann inverse.
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Proposition 8 (cf. [11], Theorem 1 and Lemma 2) If a nonnegative square matrix A admits
a nonnegative von Neumann inverse X (ie. A = AXA), then there exists a permutation
matrix P such that PAPT is of the form

PAPT =


J JD 0 0
0 0 0 0
CJ CJD 0 0
0 0 0 0

 ,
where C and D are nonnegative matrices of suitable sizes and J is a direct sum of matrices
of the following three types:

(1) βxyT where x, y are positive vectors and β is a positive real number.
(2) 

0 β12x1y
T
2 0 0 · · · 0

0 β23x2y
T
3 0 · · · 0

...
. . . · · ·

...
0 0 · · · βd−1,dxd−1y

T
d

βd1xdy
T
1 0 · · · 0


where for 1 ≤ i ≤ d the vectors xi, yj are positive and βij is a positive real number.

(3) the zero matrix.

Notice that the positive vectors xi and yj are not necessarily of the same size so that the
matrices βijxiy

T
j are possibly rectangular matrices.

We next prove the following key lemma.

Lemma 9 Let A ∈ Mn,m(R+) be of rank one. Then there exist E2 = E ∈ Mn(R+), F 2 =
F ∈Mm(R+) and M ∈Mn,m(R+) a quasi-permutation matrix such that A = EMF .

Proof. As in Proposition 2, we may assume that the first row of A is nonzero. We let αi ∈ R+

be such that Li = αiL1 for all i ∈ {1, . . . , n} with α1 = 1. Since L1 is not zero there exist an
element 0 6= a ∈ R+ and i0 ∈ {1, . . . ,m} such that the ith0 entry of the vector L1 is a. We
then have A = EMF with E =

∑n
i=1 αiei1, M = ae1i0 and F =

∑m
j=1 a

−1(L1)jei0j . Notice
that the matrix M has only one nonzero entry and hence this is indeed a quasi-permutation
matrix.

We may now state the analogue of Proposition 11 in the paper [3]. In fact the statement
and proof are very similar, the only difference being that the blocks of the permutation by
block matrix may be rectangular matrices. The above lemma plays a key role in dealing with
rectangular blocks.

Proposition 10 Let A = (Aij), 1 ≤ i, j ≤ l be a quasi-permutation by blocks matrix associ-
ated with the permutation σ ∈ Sl. Suppose that, for every i, 1 ≤ i ≤ l there exist matrices
Ei,Mi, Fi of suitable sizes such that Aiσ(i) = EiMiFi. Then A can be factorized in the follow-
ing way:

A = diag(E1, . . . , El)(M)diag(Fτ(1), . . . , Fτ(l)) (∗)

where τ = σ−1 and the matrix M = (Mij) is a quasi-permutation by blocks matrix associated
with σ and such that Miσ(i) = Mi.

Moreover, if for 1 ≤ i ≤ n the blocks Mi are quasi-permutation matrices, then M is also
a quasi-permutation matrix and if A is singular then A is a product of idempotent matrices.
In case the matrices Ei, Mi and Fi appearing above are all nonnegative then A is a product
of nonnegative idempotent matrices.
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Proof. Let us call D the matrix on the right hand side of the equality (*) and compute, for
1 ≤ r, s ≤ l, Dsr the (s, r) block of D.
We have

Dsr =
(
diag(E1, . . . , El)(Mij)diag(Fτ(1), . . . , Fτ(l))

)
sr

=

l∑
k=1

(diag(E1, . . . , El)sk
(
(Mij)diag(Fτ(1), . . . , Fτ(l))

)
kr

= Es
(
(Mij)diag(Fτ(1), . . . , Fτ(l))

)
sr

= Es
(∑

t

(Mij)stdiag(Fτ(1), . . . , Fτ(l))tr
)

= EsMsσ(s)(diag(Fτ(1), . . . , Fτ(l))σ(s)r.

If r 6= σ(s) we get (diag(Fτ(1)1, . . . , Fτ(l)l)σ(s)r = 0 and hence Dsr = 0. If r = σ(s) we have
Dsr = EsMsdiag(Fτ(1), . . . , Fτ(l))σ(s)σ(s) = EsMsFτ(σ(s)) = EsMsFs = Asσ(s) = Asr. This
shows that Dsr = Asr for all 1 ≤ r, s ≤ l.

For the additional statement we first remark that, as mentioned above a quasi-permutation
by block matrix whose blocks are quasi-permutation matrices is itself a quasi-permutation
matrix. The result then follows immediately from Lemma 7.

Theorem 11 Let A be a singular nonnegative matrix having a nonnegative von Neumann
inverse X (i.e. A = AXA). Then A is a product of nonnegative idempotent matrices.

Proof. By Proposition 8 A is a quasi-permutation by blocks matrix associated with a permu-
tation σ ∈ Sl. We can thus write A = (Aij) where the nonzero blocks Aiσ(i) ∈ Mni,nσ(i)(R+)
are matrices of rank 1. Using Lemma 9, we can write Aiσ(i) = EiMiFi where Ei and Fi are
idempotent matrices and Mi is matrix of rank 1. Proposition 10 above shows that our matrix
A can be written as A = diag(E1, . . . , El)Mdiag(Fτ(1), . . . , Fτ(l)), where τ = σ−1. The two
diagonal matrices on the right hand side of this equality are idempotent matrices and the
matrix M is a quasi-permutation square matrix. By Theorem 7 the matrix M is a product of
nonnegative idempotent matrices, completing the proof.

The following example shows that the condition for a nonnegative matrix to have non-
negative von Neuman inverse is not necessary for the matrix to decompose into a product of
nonnegative idempotent matrices.

A :=

1 1 1
0 1 1
0 0 0

 =

1 0 2
0 1 1
0 0 0

1 0 0
0 1 1
0 0 0


So the nonnegative matrix A can be decomposed as product of nonnegative idempotent

matrices. Now let Z ∈ M3(R) be such that A = AZA. Denote by x1, x2, x3 the entries of
the first row of Z. Comparing the (1, 1) and the (1, 2) entries on both sides of the equality
A = AZA we get x1 = 1 and x2 = −1. This shows that none of the von Neumann inverses of
A is a nonnegative matrix. The condition of the above theorem is thus only sufficient.

4 Periodic nonnegative matrices and 0-1 matrices.

In this last section we will show that a periodic nonnegative matrix is a product of nonegative
idempotent matrices with some mild assumption. In particular, in some cases we will ask that
the matrix does not have a zero row or a zero column. We will need the notion of Drazin
inverse of a real matrix. Let us recall that a Drazin inverse of a matrix A is a matrix AD such
that

ADAAD = AD AAD = ADA Ak = ADAk+1,
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where k ∈ N is the index of A, i.e. the smallest positive integer such that rank(Ak) =
rank(Ak+1). Let us remark that if this index k equals 1, we immediately get that A = AADA,
which means that AD is a von Neuwmann inverse of A. Let us also remind that a matrix is
periodic if there exist positive integers s < l such that Al = As. The following classical lemma
is well-known.

Lemma 12 Let A ∈Mn(R+) be a nonnegative matrix with no zero row or zero column such
that A = A1 + · · ·+ Ar where the matrices A1, . . . , Ar are nonnegative with the property that
for every 1 ≤ i, j ≤ r we have AiAj = 0, i 6= j. Then there exist a permutation matrix P and
square matrices B1, . . . , Br such that

PAP t =

B1 . . . 0
. . .

0 . . . Br


is a diagonal block matrix.

Let us remark that the above result can be a bit precise: we have for every i = 1, . . . , r
that PAiP

t = diag(0, . . . , Bi, 0, . . . ). Furthermore, if every Ai is a product of nonnegative
idempotent matrices then the above lemma shows that the matrix A itself is a product of
nonnegative idempotent matrices.

Theorem 13 Let A be a nonnegative periodic matrix with no zero row or zero column. If
either the index of A is 1 or A > An for some n, then A is a product of nonnegative idempotent
matrices.

Proof. Since A is periodic there exist 1 ≤ s < l such that Al = As. This shows that A
satisfies the polynomial p(λ) = λs(1− λl−s) = λs(1− λ(λl−s−1)). If we define q(λ) := λl−s−1

then the Drazin inverse of A is given by AD = Anq(A)n+1 (cf. Exercise 32 p.173 in [7]) where
n is any integer greater or equal to the index of A. We remark that this formula is valid
for any polynomial satisfied by A. Hence we get AD is a power of A, say AD = Ak, where
k = n+ (n+ 1)(l − s− 1). This implies that this Drazin inverse is nonnegative. If the index
of A is one we have a nonnegative von Neumann inverse and our previous result shows that A
is a product of nonnegative idempotent matrices. Now, let us assume that A ≥ Ar for some
r > 1. Then A ≥ Ar = A.Ar−1 ≥ Ar.Ar−1. Continuing this process we get A ≥ ArAm(r−1)

for any positive integer m .....(1).
Invoking Goel-Jain (Theorem 3 in [11]), we can write A = A1 +A2 + · · ·+Am +N where

each Ai ≥ 0, rankAi = 1, AiAj = 0, for i 6= j and AiN = 0 for all i = 1, 2, ...m. Moreover N
is nilpotent but need not be nonnegative. Our object is to show that N is nonnegative.Since
N = A− A2AD = A− At, where t = k + 2 = n+ 2 + (l − s− 1)(n+ 1) and n is any integer
larger than the index of A, we want to find a suitable t such that A > At. In other words, by
(1) we need t to be of the form r +m(r − 1). This implies that we want to find n ≥ λ where
λ is the index of A such that t = n+ 2 + (l− s− 1)(n+ 1) is also of the form r+m(r− 1) for
some m. Equivalently, we have to find n ≥ λ and m such that

n+ 2 + (l − s− 1)(n+ 1) = r +m(r − 1)

After simplifications this implies that we have to find n ≥ λ and m such that (n+ 1)(l− s) =
(m+ 1)(r− 1). This is easy. Write (l− s)(r− 1)(λ+ 1) = (l− s)(rλ+ r−λ− 1) = (l− s)(rλ+
r−λ−2+1) = (l−s)(n+1) since r > 2. We then have n ≥ λ and (l−s)(n+1) = (m+1(r−1)
for some m, as required. This proves that N is nonnegative.

Since nonnegative nilpotent matrices are always product of nonnegative idempotent ma-
trices (cf. [3]), we conclude that N is a product of nonnegative idempotent matrices. Since
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each A′i is of rank one it is a product of nonnegative idempotents matrices. Now, to finish the
proof we invoke the above lemma 12 and conclude that the matrix A is indeed a product of
nonnegative idempotent matrices.

Remark 14 In the case of index one we do have that AD is a von Neumann inverse and
we don’t have to use the lemma mentioned above. In particular in this case we don’t need to
assume that A does not have a zero row or column.

Let us recall that a matrix A ∈Mn(R) is irreducible if there does not exist a permutation

matrix P such that PAP t is of the form

(
E F
0 G

)
In [14] it is shown that if A ∈ Mn(R) is an irreducible, nonnegative definite 0-1 matrix

then A must be the matrix consisting of all entries equal to 1. Such a matrix, being of rank
one can be presented in the form of a product of nonnegative idempotent matrices. Since
in the same paper [14] it is also shown that for any nonnegative definite 0-1 matrix A there
exists a permutation matrix P such that PAP t is a block diagonal matrix having nonnegative
irreducible definite 0-1 matrices as diagonal blocks. Thus we immediately obtain the following
proposition.

Proposition 15 Let A ∈ Mn(R be a singular nonnegative definite 0-1 matrix. Then A is a
product of nonnegative idempotent matrices.
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