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The main purpose of this document is to give a brief but mathematically rigorous de-
scription of the network-based models of transmission of infectious diseases that are studied
on this web site1. Readers will be able to find a much more detailed development of this
material in our book chapters [5, 6]. We also briefly describe how the network-based models
that are defined here are related to compartment-level models that are used in most on the
literature on mathematical epidemiology.

1 Network-based models and their parameters

1.1 Introduction

Epidemiology studies the spread of diseases caused by pathogens, such as viruses or bacteria,
in populations of hosts, which can be humans, animals, or plants. The goal is to predict the
time course of an outbreak of a given disease in a population and the effect of conceivable
control measures, such as vaccination, quarantine, culling, or behavior modification on the
severity of the outbreak. Of particular importance is the question of how such control
measures would affect the final size of the outbreak, that is, the proportion of hosts in the
population who will eventually experience infection.

Mathematical models are greatly simplified representations of reality. Based on im-
plementation of such models in computer code, epidemiologists can simulate hypothetical
outbreaks under various assumptions about control that might possibly be implemented
and derive predictions about their likely effectiveness. We designed a software tool IONTW
that allows for studying this type of questions.

The models embodied in IONTW are agent-based network models for diseases that are
transmitted by direct contact between two hosts. This leaves out vector-born infectious

∗ c©Winfried Just, Hannah Callender, M. Drew LaMar, 2014
†Department of Mathematics, Ohio University, Athens, OH 45701 E-mail: mathjust@gmail.com
‡University of Portland E-mail: callende@up.edu
§The College of William and Mary E-mail: drew.lamar@gmail.com
1http://www.ohio.edu/people/just/IONTW

1



diseases such as malaria and diseases such as cholera that are transmitted through shared
environmental resources.

When making inferences from mathematical models to the spread of infections in pop-
ulations of actual hosts, one needs to carefully examine how the assumptions of the models
influence their predictions. IONTW allows us to study how the simplifying assumptions
about the contact pattern that are embodied in the contact network influence the outcomes
of simulations. It also can be used for exploring the sensitivity of these outcomes with
respect to the other model parameters.

1.2 Basics of disease transmission modeling

A standing assumption of our modeling is that we investigate the spread of one given
infectious disease. We ignore demographics (births, deaths from causes that are unrelated
to the disease, immigration, and emigration) and assume a fixed population of hosts that
are numbered from 1 to N . At any given time t, host i can be in one of the following states:

• S: Susceptible to infection.

• E: Exposed to the pathogens, but not yet infectious.

• I: Infectious, that is, able to infect other hosts through direct contact.

• R: Removed, that is, not infectious and immune to subsequent infection (through
vaccination or recovery from the disease). Hosts who have died from the disease or
been subjected to culling or quarantine also are in this state.

The sets of hosts that are in states S,E, I,R will be referred to as the S-compartment,
the E-compartment, the I-compartment, and the R-compartment, respectively. Membership
in the compartments changes over time, and one can conceptualize the time course of an
outbreak as movement of hosts between compartments.

We use the following notation:

• At time TEi host i moves from the S-compartment into the E-compartment. We refer
to TEi as the time of exposure of host i.

• At time T Ii host i moves into the I-compartment. We refer to T Ii as the onset of
infectiousness of host i.

• At time TRi host i moves out of the I-compartment. We refer to TRi as the cessation
of infectiousness of host i.

• The time interval [TEi , T
I
i ) is called the latent period of host i. Its length T Ii − TEi is

denoted by τEi and called the duration of latency of host i.

• The time interval [T Ii , T
R
i ) is called the period of infectiousness of host i. Its length

TRi − T Ii is denoted by τ Ii and called the duration of infectiousness of host i.
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Expressions like TEi = t specify transition events as they tell us what happened when
to which host. One standing assumption is that for every transition event TEi = t0 there is
a transition event T Ii = t1 with t0 < t1. In other words, we assume that each exposed host
will eventually become infectious. In all models that can be implemented in version 1.0
of IONTW it is assumed that removal is permanent so that hosts never can leave the
R-compartment.

Further restrictions on the transition times and transition events are imposed by the
particular model type. In SEIR-models we assume that for every transition event T Ii = t1
there is a transition event TRi = t2 with t1 < t2 <∞ so that all hosts who become infectious
will subsequently be removed. Figure 1 schematically depicts this type of models.

Figure 1: Schematic representation of SEIR-models.

The same assumption is made in SIR-models as schematically depicted by Figure 2.
However, in SIR-models we ignore the latent period and assume that at time T Ii host i
directly moves from the S-compartment to the I-compartment. Both SEIR- and SIR-
models are suitable for the study of immunizing infections, such as measles, chicken pox,
or the seasonal flu.

Figure 2: Schematic representation of SIR-models.
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For diseases such as HIV-infection from which hosts never recover one might use SI-
models as schematically depicted by Figure 3. In these models there is no R-compartment,
which could be mathematically expressed by setting TRi =∞. Addition of an E-compartment
to an SI-model will give an SEI-model.

Figure 3: Schematic representation of SIR-models.

For diseases such as Gonorrhea that do not confer immunity upon recovery one might
use SIS-models as schematically depicted by Figure 4. In these models, at time TRi host i
would move back to the S-compartment. Note that while in SEIR-, SIR-, and SI-models
there can be at most one time T Ii = t1 and at most one time TRi = t2 for each host i, in
SIS-models there could be multiple such times. Our notation allows for this ambiguity if
we treat T Ii = t1 and TRi = t2 as symbolic expressions rather than equations that uniquely
specify a time. Addition of an E-compartment to an SIS-model will give an SEIS-model.

Figure 4: Schematic representation of SIS-models.

Time in our models could be either continuous or discrete. In the former case, we can
assume that at most one state transition event will happen at any given time, while in the
latter case multiple such events may occur simultaneously.

Transition of host i from the S-compartment into the E-compartment at time t = TEi
(in an SEIR-, SEI-, or SEIS-model) or from the S-compartment into the I-compartment
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at time t = T Ii (in an SIR-, SI-, or SIS-model) requires a successful (from the point of
view of the pathogen) contact with another host j at time t, which is defined as a contact
during which a sufficient number of pathogens will be transferred from host j to host i. A
successful contact at time t requires that host i is susceptible and host j infectious at time t.
Thus the probability of a successful contact will depend on the state of the population and
will change over time.

An effective contact between hosts i and j is a contact that would be successful if host i
were susceptible and host j infectious at the time of the contact. We assume that for any
given pair (i, j) of hosts the probability of at least one effective contact over a time interval
of length ∆t remains fixed, and hosts make contacts independently. In discrete-time models
this probability is denoted by bi,j , and ∆t is taken as the physical time that corresponds to
one time step in the model. In continuous-time models we assume that hosts i and j make
contacts at a fixed rate βi,j .

Similarly, in discrete-time models we assume that the probability that a host who is
infectious at time t will cease to be infectious at time t+ 1 (∆t units of physical time later)
with probability a, which is fixed and the same for all hosts. In continuous-time models we
assume that hosts will leave the I-compartment at a fixed rate α. Similarly, in discrete-time
models with E-compartments we assume that the probability that a host who is in state E
at time t will be infectious at time t+1 (∆t units of physical time later) with probability el,
which is fixed and the same for all hosts. In continuous-time models with E-compartments
we assume that hosts will leave the E-compartment at a fixed rate γ.

The mean duration of infectiousness 〈τ I〉 and the mean duration of latency 〈τE〉 can be
calculated from these parameters as follows:

〈τ I〉 =
∆t

a
in discrete-time models,

〈τ I〉 =
1

α
in continuous-time models,

〈τE〉 =
∆t

el
in discrete-time models,

〈τE〉 =
1

γ
in continuous-time models.

(1)

For a given continuous-time model one can build a discrete-time approximation by choos-
ing an appropriate unit ∆t of physical time that corresponds to one step of the discrete-time
model and using the following conversions of rates into probabilities:

bi,j = 1− e−βi,j∆t,

a = 1− e−α∆t,

el = 1− e−γ∆t.

(2)

For actual diseases, the durations of infectiousness for individual hosts tend to be nor-
mally distributed instead of exponentially distributed as they are in our continuous-time
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models. One might get more realistic discrete-time SIR- or SIR-models by using ∆t = 〈τ I〉
and setting a = 1 instead of using the conversion (2). We call such discrete-time models
where hosts stay infectious for exactly one time step next-generation models. One can treat
them as approximations to the spread of the infection in time, or, alternatively, as models
for the evolution of so-called generations of the infection. Generation Gen(0) comprises all
initially infected hosts, and generation Gen(n+ 1) comprises all hosts that became infected
by a host in generation Gen(n). In real outbreaks, the order which hosts become infectious
is positively correlated with, but usually not identical with the numbering of the genera-
tions to which they belong. Thus the variable n does not represent physical time when we
consider generations of the infection.

In most of the modules and exercises at this web site, we will consider outbreaks that
start at time 0 with exactly one infectious host j∗ (the so-called index case), so that
Gen(0) = {j∗}. If all other hosts are susceptible at time 0, we refer to such an initial
state as introduction of one index case into an otherwise susceptible population.

1.3 Network-based models

We assume that we are given a simple graph G with V (G) = {1, . . . , N} that represents the
contact network of the hosts in the population. Effective contacts can occur only between
hosts i, j for which {i, j} ∈ E(G), that is, between hosts that are represented by adjacent
nodes in the graph G. If such an edge is present, then we assume that the frequency of
contact does not depend on the particular hosts i, j that are connected by the edge. In the
context of a discrete-time model, this means that

bi,j =

{
b if {i, j} ∈ E(G),

0 if {i, j} /∈ E(G),
(3)

where b is a fixed parameter of the model. In the context of continuous-time models we get

βi,j =

{
β if {i, j} ∈ E(G),

0 if {i, j} /∈ E(G),
(4)

where β is a fixed parameter that represents the rate at which adjacent hosts make contact.
Since the graph G was assumed simple, {i, i} /∈ E(G) and bi,i = βi,i = 0 for each host i.

Thus our network-based models are defined in terms of the following parameters:

• The population size N ,

• the contact network G, and

– the transition probabilities a, b, el and the length ∆t of the time step (for discrete-
time models) or

– the transition rates α, β, γ (for continuous-time models).

The Reference Guide to IONTW gives details about how these parameters are controlled
by the interface of the software and which types of networks can be explored with IONTW.
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1.4 Modeling disease transmission on random contact networks

For transmission of most diseases in large real communities it is usually impossible to
construct the actual relevant contact network. However, it is often feasible to estimate
some parameters of the network, such as the mean degree 〈k〉 by collecting partial data on
the network. One can then choose the graphs G for our network-based models randomly
so that with high probability it will have parameters similar to the ones that have been
empirically observed for contact networks of interest.

If we choose several such graphs, we might reasonably expect that they form a rep-
resentative sample of actual contact networks. Essentially this is the same trick that we
use whenever we run simulations. During the run of multiple simulations, the computer
produces in effect a representative sample of state transition sequences that could occur
in a given model, and we can use the outcome of simulations to form reasonably reliable
hypotheses about what should happen in real outbreaks. Considering “random” objects
(graphs or state transition sequences) is a mathematician’s way of dealing with uncertainty.
The only novelty is that we are now considering two distinct sources of uncertainty: Un-
certainty about the actual contact network, and uncertainty about the actual sequence of
state transitions that will happen in a model based on a given network. In order to draw
valid conclusions, we will need to take into account both the variability that we see between
multiple runs of simulations of a model that is based on a fixed random graph (variability
within a fixed model) as well as the variability that we observe when we average the results
of multiple runs performed for fixed models and compare these averages for multiple draws
of random graphs (variability between models).

Several of the network options of IONTW give instances of random networks that are
drawn from certain probability distributions.

2 Compartment-level models and R0

2.1 Compartment-level models

Many mathematical models of disease transmission are based on the assumptions of homo-
geneity of hosts and uniform mixing. In our terminology, the first of these assumptions boils
down to assuming that the parameters el, a or γ, α that govern the transition from the E-
compartment into the I-compartment or from the I-compartment into the R-compartment
are identical for each host. We make this assumption in all our models.

In contrast, the uniform mixing assumption boils down to assuming that the parameters
bi,j or βi,j that give the probabilities or rates of making effective contact are identical for
each pair (i, j) of hosts with i 6= j. In our network-based models, this assumption is satisfied
if, and only if, the contact network is the complete graph KN with N nodes that contains
all possible edges {i, j}. Thus our software IONTW allows us to investigate models that use
the uniform mixing assumption. We can then explore to what extent predictions of models
that were constructed under the this simplifying assumption remain valid for more realistic
contact networks.
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When both assumptions of homogeneity of hosts and uniform mixing are made, hosts
lose all individual characteristics, and the state of the model at time t can be conceptualized
as the vector (|S(t)|, |E(t)|, |I(t)|, |R(t)|) of numbers2 of hosts in the compartments. The
distribution of future states of the model is then entirely determined by the current state.
Models that operate entirely on the level of these counts or their expected values are usually
called compartment-based models. However, we prefer the phrase compartment-level models.
All models of disease transmission use compartments, but the models that we defined in
the previous section distinguish between individual hosts, while models based on summary
information for the compartments do not.

2.2 The basic reproductive ratio R0

Consider an initial state that corresponds to introduction of an index case j∗ into an oth-
erwise susceptible population. The number of secondary infections caused by the index
case j∗ is a r.v. Its mean value is the most important parameter in disease modeling.

Definition 1 The basic reproductive ratio or basic reproductive number R0 is the mean
number of secondary infections caused by an average index case in a large entirely susceptible
population.

In continuous-time network-based models as defined in Section 1, the value of R0 can
be approximated as follows:

R0 ≈
β

α+ β
〈k〉. (5)

In discrete-time network-based models we could use the approximation:

R0 ≈
b

a+ b− ab
〈k〉. (6)

In both (5) and (6), the symbol 〈k〉 stands for the mean degree of the contact network.
IONTW uses these approximations for calculating R0 with its Metrics function. The
derivation of (5) and (6) can be found in Module 5 of the online appendix to [5].

For large network sizes the mean degree of the complete graph KN is 〈k〉 = N − 1 ≈ N .
Moreover, in this case realistic models of actual diseases would have parameters β � α
or b � a. For small values of ∆t, in view of (1) and (2), this leads to the following
approximation (5) and (6) that is often used in the literature on compartment-level models.

R0 ≈
βN

α
= β〈τ I〉N ≈ (1− e−β∆t)〈τ I〉N

∆t
≈ b〈τ I〉N

∆t
. (7)

where the last two approximations are valid for sufficiently small ∆t.

2The symbol |A| denotes the size of a set A here.
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2.3 Some predictions of compartment-level models

In compartment-level models, the value of R0 entirely determines whether there is a positive
probability of major outbreaks that will affect a significant fraction of the population. More
precisely, if R0 ≤ 1, then for every given probability p there exists a finite bound B(p)
that does not depend on the population size N , such that with probability at least p,
no more than B(p) hosts will experience infection during and outbreak that is caused by
introduction of an index case j∗ into an otherwise susceptible population. We say that in
this case all outbreaks will be minor. Note, however, that in a relatively small population
the fraction B(p)

N may still represent a significant proportion of the population.
In contrast, if R0 > 1 and we are working with an SIR- or SEIR-model, then there are

numbers r(∞) and z∞ that satisfy the inequalities 0 < r(∞), z∞ < 1 such that as long as
the population size is large, with probability very close to 1− z∞, introduction of a single
index case into an otherwise susceptible population will result in a major outbreak with
final size close to r(∞).

The number z∞ represents the probability of a minor outbreak for very large popula-
tion sizes. The notation can be understood by thinking of z∞ as the probability that a
near zero proportion of hosts in a near infinite population will experience infection dur-
ing the outbreak. One important piece of information here is that z∞ < 1, so that the
probability 1− z∞ of a major outbreak is positive.

The number r(∞) represents the predicted final size for large populations. For SIR- or

SEIR-models, this is the proportion |R(t)|
N for a very large t, after the outbreak has run its

course. Mathematicians are fond of thinking of very large times as t = ∞, which explains
the notation.

Note that r(∞) gives the approximate proportion only if the observed outbreak was in
fact a major one. It is very interesting that r(∞) is always predicted to be less than 1.
This means that even if R0 is very large, a proportion 1− r(∞) > 0 of hosts is predicted to
escape infection.

For a given modeling approach, the values of z∞ and r∞ do not depend on the actual
population size N , so that if we run many simulations for a variety of very large population
sizes N , we should observe major outbreaks with approximately the same probability 1−z∞.
These values may be significantly different though for different values of R0; the larger R0,
the less likely it is that the outbreak will only be a minor one, and major outbreaks will
affect a larger proportion r(∞) of the population.

Another important prediction of compartment-level models is that vaccination of a pro-
portion of at least HIT randomly chosen hosts will guarantee that all outbreaks are re-
stricted to minor ones. The critical proportion HIT is called the herd immunity threshold
and is given by

HIT =
K

N
= 1− 1

R0
. (8)
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3 Some pointers to the literature

The previous subsection only gave a couple of highlights from the vast literature on compart-
ment-level models. In some modules at this web site, we will refer to these results for
comparison with the prediction of network-based models. Students who want to learn more
about these models have a broad choice of good introductory texts, such as [1, 4, 7, 8]. We
particularly recommend the textbook [2] that gives the most comprehensive and treatment.
It also uses the same notation as in Subsection 2.3 and contains many excellently structured
exercises with hints and worked-out solutions.

Network-based models are covered to a limited extent in some of the introductions that
we listed above. A mathematically more advanced treatment can be found in [3]. We
recommend our chapter [5] as a detailed elementary introduction into this type of models.
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