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In this module we explore in detail the distribution of the sizes of connected components
of Erdős-Rényi random graphs and discover the reasons for the similarities and differences
between disease transmission on Erdős-Rényi networks and complete graphs that were ob-
served in the explorations of Module 6 of [2].

1 Introduction

As we explained in the brief overview of network-based models of transmission of infectious
diseases at this web site1, for most populations of hosts the actual contact network is not
known, and we want to model it as a random graph. There are various constructions of
such random graphs. They give us networks that usually share some, but not all properties
of real contact networks. The most basic of these constructions gives Erdős-Rényi random
graphs, named after the two Hungarian mathematicians who first systematically explored
these graphs in the seminal paper [1]. These graphs serve as a benchmark against which all
other constructions of random networks can be compared.

1.1 Definition of Erdős-Rényi random graphs

To construct such an Erdős-Rényi graph, we first decide on the set of nodes {1, 2, . . . , N}.
Then we list all edges e1, . . . , eN(N−1)
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of the complete graphKN withN nodes and repeatedly

toss a biased coin that comes up heads with probability p. We include edge e` as an actual
edge of the random graph if, and only if, the coin comes up heads in toss number `.

The mean degree 〈k〉 of the resulting graph will be approximately

〈k〉 ≈ λ = p(N − 1). (1)
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Thus by choosing a suitable value of the connection probability p, one can assure that
the mean degree 〈k〉 of an Erdős-Rényi random graph will be close to the values that one
might have estimated from data on real networks.

It will be more convenient if we think of Erdős-Rényi random graphs in terms of the
parameter λ instead of the parameter p. The connection probability p can then be easily
calculated as p = λ

N−1 . The symbol GER(N,λ) will denote an Erdős-Rényi random graph
that is constructed with parameters N and λ.

Note that we used the indefinite article an in the previous sentence. GER(N,λ) is not a
uniquely determined; in fact, it could be any graph G with vertex set V (G) = {1, . . . , N}.
The symbol GER(N,λ) only signifies that the graph is randomly drawn from a specific
probability distribution. We will call a particular graph that has been constructed by the
method described above an instance of GER(N,λ). Note that (1) contains the symbol ≈.
For a given instance of an Erdős-Rényi random graph we may not have exact equality 〈k〉 =
λ, but λ can be treated as the mean of 〈k〉 for all instances.

1.2 Properties of classes of networks

When we study random networks, we will no longer be able to definitely assert that a given
random graph of a certain type has some property of interest to us. Instead, we will study
the properties of a class of graphs.

The notion of a class of graphs takes some getting-used to. For a given value of the
parameter λ, the construction of GER(N,λ) defines a class of graphs that contains instances
for arbitrarily large network sizes N . While for a given instance the mean degree 〈k〉 may
differ from λ, when N is large, it will be very close to λ with probability that is very close
to 1.

More precisely, for any fixed error bound ε > 0, the probability that the mean degree 〈k〉
of a randomly drawn instance GER(N,λ) will differ from λ by more than ε will approach 0 as
N →∞. Mathematicians say that the mean degree 〈k〉 of the actual instances approaches λ
asymptotically almost surely, abbreviated a.a.s.

Thus all the properties of random graphs that we will be considering in this and sub-
sequent modules are average properties. The best we can hope for is that some properties
will hold a.a.s.

For another example, consider the degree distribution of GER(N,λ). On average, this
should be a binomial distribution with parameters N and p = λ

N−1 , but for any given
instance it may be slightly different. Binomial degree distributions are a bit cumbersome to
work with. For large N and fixed λ it can be approximated reasonably well with a Poisson
distribution with parameter λ, so that

qk ≈
λke−λ

k!
, (2)

where qk is the fraction of nodes with degree k. Again, for any fixed error bound ε > 0
and nonnegative integer k, the probability that the proportion qk of nodes with degree k in
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randomly drawn instance GER(N,λ) will differ from λke−λ

k! by more than ε will approach 0

as N →∞. In other words, qk will approach λke−λ

k! a.a.s.
These probabilities qk decrease rapidly to 0 as k → 0. In particular, as N → ∞, the

expected maximum degree in GER(N,λ) will a.a.s. be less than ln(N).
The phrase “asymptotically almost surely” also can be used for properties that are

categorical rather than expressed in numerical values. For example, for certain types of
random graphs it can be shown that they will a.a.s. be connected, which means that as
N → ∞ the probability of drawing a disconnected instance from this class with N nodes
approaches zero. For other classes of random graphs it can be shown that a.a.s. they
contain many different connected components. This does not imply even for very large N
that we could not accidentally draw a graph from the former class that is disconnected or
from the latter that is connected. It only implies that for very large N these events become
very, very unlikely.

2 Exploring the connected components of Erdős-Rényi ran-
dom graphs

Open IONTW, press Defaults, set the speed control slider to the extreme right, and use
the following parameter settings.

model-time: Discrete
infection-prob: 1
end-infection-prob: 1
network-type → Erdos-Renyi
num-nodes: 300
lambda: 1.5
auto-set: Off

These parameter settings specify a next-generation SIR-model on an Erdős-Rényi net-
work GER(300, 1.5). Press New to look at the network. It is not possible to visually make
out the connected components. But we can use the properties of the disease transmission
model to visualize them: Since the probability b of an effective contact until the next time
step, controlled by the input field infection-prob, is equal to 1, all nodes in the connected
component of the index case j∗ will eventually experience infection. The input setting end-
infection-prob = 1 specifies a next-generation SIR-model in which all infectious nodes
will get removed after exactly one time step and turn grey. If initially there is exactly one
index case j∗ in an otherwise susceptible population, all nodes outside of the connected
component of j∗ will remain green, and the connected component of j∗ will show up in grey
at the end of the simulation.

To see how this works, press Set to introduce one infectious node, and then Go. Repeat
about 10 times for this network using Reset and then Set. This will keep the network fixed,
but will change the initially infectious node. Record the approximate sizes of the connected
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component by moving your mouse over the relevant part of the grey curve in the Disease
Prevalence plot.

Exercise 1 What do you observe? Do you get connected components with a range of dif-
ferent sizes? If the component is large, is it always the same one? How can you tell from
the plot?

The results may look puzzling. Repeat 10 more times, but look at a different in-
stance GER(300, 1.5) each time by pressing New instead of Reset before pressing Set.

Exercise 2 In what respect are the results similar to the ones of the previous exercise; in
what respect are they different?

This is interesting. It appears that there is always one very large component in addition
to many small ones.

Let us try to confirm the results we have discovered so far by running a large batch of
simulations instead of looking at a few instances.

Switch auto-set: On

With the current parameter settings, define and run a batch processing experiment by
using the template given at this web site2 and the following specifications:

Define a New experiment.
Repetitions: 100
Measure runs using these reporters:

count turtles with [removed?]

Setup commands:
new-network

Exercise 3 After the experiment is completed, open and analyze your output files. The col-
umn with the header count turtles with [removed?] reports the sizes of the connected
component of the initially infectious node. Try to make out a distinctive gap between small
and large components that were reported. Then record the maximum size of the observed
small components and the mean size of the observed large components. Express these num-
bers as fractions of the total population size. Do your results confirm the preliminary ob-
servations that you made in the previous exercises?

Now let us put our observation into the context of mathematical theory. Let us assume
that the mean degree λ remains fixed, but N is allowed to be arbitrarily large. It can
be shown that for λ > 1 there exist positive constants %(λ) and csmall(λ) and such that
a.a.s. (asymptotically almost surely) the proportion of nodes in the largest connected
component of GER(N,λ) will approach %, while the size of all other components will not
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exceed csmall(λ) ln(N). In contrast, when λ < 1, a.a.s. all connected components of the
graph E(GER(N,λ) will have size ≤ csmall(λ) ln(N).

For large N , the value of csmall(λ) ln(N) is much, much smaller than N . In mathematical

language, limN→∞
csmall(λ) ln(N)

N = 0. This implies that for λ < 1 we would expect that each
connected component of GER(N,λ) comprises only a very small proportion of the set of all
nodes. The same will be true for all components other than the largest one when λ > 1.
In particular, for all choices of λ the graphs E(GER(N,λ) will a.a.s. contain many small
connected components; in particular, they will a.a.s. be disconnected.

In the literature, the large connected component that we observed for λ > 1 is usually
referred to as the giant component. Technically, a class of random graphs is said to contain
giant components a.a.s. if for some fixed constant Θ > 0 the probability that a graph from
this class contains at least one connected component of size ≥ ΘN approaches 1 as the
size N of its vertex set increases without bound.

This definition is a mouthful. Let us take a close look at it. The definition assumes a
fixed proportion Θ. It does not matter how close Θ is to 0; we only require that it is fixed
and positive. For large N , the class is assumed to contain many networks of size N . Now
fix N . For some of the graphs of size N in the class, the proportion of nodes in the largest
connected component may be less than Θ. But if we choose N sufficiently large, most of
these graphs will have a component of size ≥ ΘN . For large N , if we randomly choose
one of these graphs, we may occasionally end up with a graph whose largest connected
component has size < ΘN . But with probability arbitrarily close to 1 as N is sufficiently
large, we will draw a graph with a connected component of size ≥ ΘN . For the class of
graphs GER(N,λ) with fixed λ > 1, any value of Θ with 0 < Θ < %(λ) will work.

Here % = %(λ) is a positive constant strictly between 0 and 1 that depends only on λ.
It is the unique solution of the equation

1− % = e−λ% (3)

in the interval (0, 1). It can be shown that for λ > 1 there exists exactly one such solution,
while for λ ≤ 1, no solutions of (3) fall in this interval. Let us list a few representative
values of %(λ):

%(1.1) = 0.1761, %(1.2) = 0.3137, %(1.5) = 0.5828,

%(1.75) = 0.7127, %(2.0) = 0.7968, %(3.0) = 0.9405.
(4)

One can prove that %(λ) is a strictly increasing function such that

lim
λ→1+

%(λ) = 0 and lim
λ→∞

%(λ) = 1. (5)

In other words, the expected relative size of the giant component increases with λ from
a tiny fraction of all nodes to a fraction that comprises nearly all nodes.

For more information on the connected components of GER(N,λ) we recommend the
survey article [4].
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Exercise 4 (a) Are your results in Exercise 3 reasonably consistent with the theoretical
predictions and the value %(1.5) = 0.5828?

(b) Try to confirm the theoretical predictions above by running a batch of 100 simulations
each for instances of GER(300, 0.5) and GER(300, 2).

3 Disease transmission on Erdős-Rényi random graphs and
complete graphs

The alert reader will have noticed the analogy between small vs. large components of
GER(N,λ) and minor vs. major outbreaks of diseases. There is in fact a close connection
and we will examine it in this section.

Consider a next-generation compartment-based SIR-model with probability b of at least
one effective contact until the next time step. This can be interpreted as a network-based
model on a complete graph KN . Consider a pair (i, j) of distinct hosts. Suppose host i
becomes infectious at some time step t and host j will still be susceptible at time t. The
probability that these hosts will have an effective contact during the interval of infectiousness
of host i, that is, until step t+ 1 in terms of the model, must be equal to b. The same will
be true if host j becomes infectious at time step t and host i is still infectious at time t.

Now construct a random subgraph G of KN as follows: Consider a simulation of a model
as described in the previous paragraph that starts with one index case j∗ in an otherwise
susceptible population. One can think of the simulation as being performed by tossing
biased coins sequentially as the simulation progresses, for all edges that have one endpoint
that corresponds to a host who is infectious at the current time step, and whose other
endpoint represents a host who is still susceptible at the current time step. The coin will
need to be biased in such a way that it comes up heads with probability b. In terms of
the simulation, the hosts that will be infectious at the next time step are exactly the ones
represented by endpoints of those edges for which a coin is tossed and comes up heads.
Include these edges in E(G), and don’t include those edges for which the coin comes up
tails.

Exercise 5 (a) If you have read Section 3 of [3], convince yourself that the description of
the simulation given in the preceding paragraph matches the description of simulations given
in that source.

(b) Convince yourself that each edge of KN will be considered at most once in this construc-
tion of E(G) for any given simulation, but there may be edges for which no decision about
inclusion in E(G) is made.

In view of the result of Exercise 5(b), after the simulation has run its course, we still need
to determine membership in E(G) for those edges of KN that have not yet been considered.
Toss a coin that come up heads with probability b for each edge such edge and include it
in E(G) if, and only if, the coin comes up heads.
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Exercise 6 (a) Show that this construction will give an instance G = GER(N,λ), where
λ = b(N − 1).

(b) What can you say about the size of the connected component of the index case in the
resulting graph G? How is it related to the final size of the outbreak?

Notice that since we are considering a next-generation model, we are implicitly assuming

that 〈τ
I〉

∆t = 1. If N is large and b small, then b(N − 1) ≈ bN , and the formula for R0 for
the case of complete graphs KN given in our review of models of disease transmission on
networks at this web site3 tells us that R0 ≈ λ, where λ is as in Exercise 6(a). Thus
the theoretical predictions about the sizes of the connected components of GER(N,λ) that
we discussed in Section 2 imply the following results for network-based next-generation
SIR-models with the uniform mixing assumption:

• If R0 < 1, then a.a.s. all outbreaks will be minor.

• If R0 > 1, then the final size r(∞) of major outbreaks will a.a.s. approach %(λ).

• IfR0 > 1, then the probability of z(∞) of minor outbreaks will a.a.s. approach 1−%(λ).

You may want to compare these predictions with the the results we sketched in Subsec-
tion 2.3 of our review of models of disease transmission on networks at this web site. Note
that here we get precise values for r(∞) and z∞.

It may not be immediately obvious why the value of z(∞) will a.a.s. approach 1− %(λ)
when λ > 1. To see this, consider a large batch of simulations for a fixed population
size N and mean degree λ and construct one instance of GER(N,λ) from each of these
simulations. We could think about reversing the order of operations by first constructing
instances of GER(N,λ) as described in Subsection 1.1, then randomly drawing j∗, and then
basing the simulations exactly on the same coin tosses that were used for the constructions
of the random graphs. For large N , the probability that j∗ does not end up in the largest
component would be very close to 1− %(λ), and it would also be close to the probability of
observing a minor outbreak in the given simulation.

These arguments explain why in simulations of next-generation SIR-models on Erdős-
Rényi random networks we will observe similar outcomes in terms of the final size and
the probability of minor outbreaks as in simulations on networks KN with the same value
of R0. Such simulations were suggested in Module 6 of [2], and for them we observed that for
continuous-time models the estimates for z∞ are significantly lower for Erdős-Rényi random
networks than for complete graphs KN that embody the uniform mixing assumption. This
discrepancy calls for an explanation, and we will give it next.

In continuous-time models, the duration of infectiousness τ Ii of each node i is an ex-
ponentially distributed random variable. Most hosts will stay infectious for a period of
less than 〈τ I〉, while some hosts will stay infectious for much longer than 〈τ I〉 (compare
with Exercise 9.77 of Module 5 of [2]). These latter hosts will then on average cause many

3http://www.ohio.edu/people/just/IONTW
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more secondary infections than R0 would predict. This phenomenon does not occur in next-
generation SIR-models where all hosts stay infectious for exactly one time step. Index cases
with very long durations of infectiousness are much more likely to cause major outbreaks
than index cases whose duration of infectiousness is shorter than 〈τ I〉. Since the nodes i
with τ Ii form a majority, we should expect z∞ to be larger in continuous-time models than
in next-generation models with the same R0 on the same network. The effect is much more
pronounced in complete networks where an index case who stays infectious for a very long
time could in theory cause up to N − 1 secondary infections than in Erdős-Rényi random
networks where the maximum degree is expected not to exceed ln(N). This explains the
discrepancies in the estimated values of z∞ between next-generation and continuous-time
models that were observed in the batch processing experiments of Module 6 of [2].

One can construct a graph G based on a continuous-time simulation in pretty much the
same way as in the construction that we described above for simulations of next-generation
models. The resulting graph G will be a random graph, but no longer an Erdős-Rényi ran-
dom graph. To see this, consider two unordered pairs {j∗, i1}, {j∗, i2}, where i1, i2, j

∗ are
all distinct. Each of these pairs will be included in E(G) with probability b, but the events
that {j∗, i1} ∈ E(G) and {j∗, i2} ∈ E(G) are no longer independent: If τ Ij∗ < 〈τ I〉, each

of these events will occur with probability less than b; if τ Ij∗ > 〈τ I〉, each of these events
will occur with probability larger than b. In other words, these two events will now be
positively correlated. In contrast, in the construction of Erdős-Rényi random graphs, the
decisions about which edges to include were all independent. Thus the probability distribu-
tion from which the random graphs G that we construct from continuous-time simulations
are randomly drawn will be different from the distribution of Erdős-Rényi random networks
GER(N,λ).
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Sample solutions for the exercises

Sample solution for Exercise 1: In some runs, almost no secondary infections occur,
which indicates that the connected component of j∗ is very small. In other runs, more than
half of all nodes get infected. This indicates that j∗ belongs to a large component that
comprises more than half (for a typical instance, around 58%) of all nodes. It must be
the same component each time, since different connected components must be disjoint and
there cannot be 2 distinct ones that contain more than half of all nodes. �

Sample solution for Exercise 2: The results are similar to those of the previous exercise
in that we observe a the same dichotomy between very small connected components and
one very large component. However, the relative size of the large component now fluctuates
around 0.58. The reason is that we create a new instant of GER(300, 1.5) for each run. �

Sample solution for Exercise 3: In our experiment we observed a distinct gap between
34 runs where j∗ belonged to a component of size at most 10 (a proportion of at most 0.03 of
all nodes) and 66 runs where j∗ belonged to a component of size at least 115 (a proportion
of at least 0.38 of all nodes). The mean size of these large components was 174.1, which
represents a proportion of 0.58 of all nodes. These results confirmed our observation in the
previous exercises. �

Sample solution for Exercise 4: (a) Yes, the results of Exercise 3 were remarkably close
to the theoretical prediction.

(b) In our experiment with 100 runs for GER(300, 2) we observed 20 runs where j∗ belonged
to a component of size at most 4 (a proportion of at most 0.013 of all nodes) and 80 runs
where j∗ belonged to a component of size at least 206 (a proportion of at least 0.69 of all
nodes). The mean size of these large components was 239.15, which represents a proportion
of 0.7972 of all nodes.

In our experiment with 100 runs for GER(300, 0.5) we did not observe a distinct gap
between small and large components. In 64 runs, j∗ was an isolated node. The largest
connected component of j∗ that we found had size 10, which represents a proportion of
0.033 of all nodes.

These results were remarkably close to the theoretical predictions. �

Sample solution for Exercise 5: (b) A given edge {i, j} will be considered only at the
first time step t when either node i or node j is infectious. Since we are assuming an SIR-
model, after this time step, at least one of the nodes i, j will be removed. If neither i nor j
become infectious during the outbreak or if both of these nodes become infectious at the
exact same time, no decision about inclusion of the edge {i, j} will be made. �

Sample solution for Exercise 6: (a) Will be given in our module Mathematical models
and theorems.

(b) The connected component of j∗ is the subgraph induced by all nodes that experience
infection. Its relative size is the final size of the simulated outbreak. �
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