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Many empirically studied networks have approximately so-called power-law or scale-free
degree distributions. In Section 1 we formally define such distributions and explore some
of their properties. We also introduce and briefly compare two methods for constructing
random networks with approximately power-law degree distributions: generic scale-free
networks and the preferential attachment model. In Sections 2 and 3 we explore disease
transmission on networks that are obtained from the preferential attachment model and
implications for designing effective vaccination strategies.

1 Scale-free networks

In regular graphs all nodes have the same degree and in Erdős-Rényi random graphs all
nodes have degrees that are very close to the mean degree 〈k〉. In contrast, many empirically
studied real-world networks contain a few nodes whose degree is very large relative to 〈k〉
(so-called hubs), while the vast majority of nodes have degrees that are substantially smaller
than 〈k〉. The particular degree distributions in these examples often resemble a power law
aka scale-free degree distribution. Since such distributions have been found in many large
real-world networks, such as the World Wide Web, neural and social networks, in nets of
citations of scientific papers, etc. [5], the study of scale-free networks is a vibrant topic of
current research.

While many excellent sources such as [3] give popular accounts of this topic, misconcep-
tions persist. We begin this section with a mathematically rigorous definition of power-law
distributions and scale-free networks and describe some of their properties. Next we com-
pare two different methods for constructing random scale-free networks: generic networks
with a given degree distribution and the famous preferential attachment model. In the re-
maining sections of the model we will focus on models of disease transmission on contact
networks that have been constructed according to the preferential attachment model. In
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a companion module we will explore in more detail properties of generic scale-free models
and of disease transmission on them.

1.1 Scale-free degree distributions and scale-free networks

Consider a degree distribution q̄ = (. . . , qk, . . . ), where qk denotes the probability that a
randomly chosen node i has degree ki = k. This degree distribution obeys a power law if

qk = cγk
−γ , (1)

where cγ and γ are positive constants. As this formula makes sense only for k > 0, we will
tacitly assume that the graph contains no isolated nodes, that is, q0 = 0.

Note that (1) implies that we always have

qk
q2k

=
cγk
−γ

cγ(2k)−γ
= 2γ , (2)

regardless of whether k is a single-digit number or on the order of hundreds or thousands.
The ratio is the same at all scales of measuring k. This is one reason why graphs with a
power-law distribution of degrees are often called scale-free networks.

This phrase needs to be handled with care. Since qk > 0 for all k > 1, Equation (1)
could be literally true only if there were infinitely many nodes in the graph1. For graphs
with finitely many nodes, (1) can be satisfied only approximately. If this is the case, we
will write that the graph is approximately a scale-free network. For many large real-world
networks, such approximately scale-free degree distributions have been reported, usually
with parameters γ such that 2 < γ < 3 (see Chapter 3 of [8] for reprints of some classical
case studies and [3] for a nontechnical description of many examples).

It is worth taking a few minutes to consider how one might detect that a given graph has
approximately a power law degree distribution. If (1) were to hold exactly, then a log-log
plot of qk as a function of k would show all data points on a straight line with slope −γ.
A log-log plot of the actual degree distribution of a given graph will not usually have all
points on a straight line, but for many empirically observed real-world networks the log-log
plot shows surprisingly accurate straight-line approximations for k in some intermediate
range. The approximation cannot be accurate for very large k, and it will often not be
valid for k that are close to 1. Still, if the approximation is very good for k in a broad
intermediate range, the graph can be considered to be an (approximately) scale-free network.
The parameter γ can then be estimated from the slope of the regression line.

Figure 1 shows two examples of approximately scale-free networks. In the left panel,
the regression line was found for degrees k ≤ 7; in the right panel, the regression line was
found for degrees k ≤ 20. Within this range, we get a very good fit. The data for higher
values of k do not match this pattern.

1For graphs with infinitely many nodes it is not immediately clear how one would define the probability qk.
While this issue is far beyond the scope of this module, interested students may want to consult the advanced
monograph [7] for a promising approach to studying what happens in the limit when N →∞.
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Figure 1: Log-log plots for degree distributions in approximately scale-free networks. (a) A
network with N = 100 nodes. The slope of the regression line is -2.51975. (b) A network
with N = 10, 000 nodes. The slope of the regression line is -2.65123.

For a given γ, one can calculate the value of the constant cγ in (1) and the mean
degree 〈k〉. In the forthcoming module Exploring generic scale-free networks we will guide
you through these calculations. The formulas that one can obtain in this way are interesting
from the mathematical point of view. But since these calculations assume that (1) is
exactly true, they are not directly applicable to the study of real-world networks that are
approximately scale-free. For a given real-world network G it will only be true that for some
positive constant cG we have qk ≈ cGk−γ for k that are neither too large nor too close to 1.
The value of cG will depend on the particular network and may be very different from the
theoretical value cγ that we will derive in the module Exploring generic scale-free networks.

In approximately scale-free networks there are many more nodes with very large degrees
than in Erdős-Rényi random graphs that were studied in Module 6 of the online appendix
of [6] and our module Exploring Erdős-Rényi random graphs with IONTW at this web
site2 (see Exercise 2 below). This property is colloquially described by saying that power-
law distributions have fat tails. Nodes with very large degrees in approximately scale-free
networks are often called hubs. This terminology has its origin in the study of networks of

2http://www.ohio.edu/people/just/IONTW/
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airline connections, where the nodes represent airports, and an edge represents the existence
of a direct flight between two airports. As you will see, hubs play an important role in the
spread of pathogens on a network.

However, in a given network there is usually no obvious cut-off for the minimum degree
that a node needs to have so as to qualify as a hub. We might give ourselves some flexibility
by defining the set of K-hubs as H(K) = {i : ki ≥ K}. The relative size of H(K) will be
approximately equal to P (ki ≥ K) as computed from (1).

Exercise 1 Let K be fixed and let i be a randomly chosen node. Use an integral to estimate
P (ki ≥ K).

It follows that the relative sizes of H(K) will decrease gradually with K, so that there
may be no obvious choice for the threshold for K above which we should consider H(K) to
represent the set of hubs. Choosing a reasonable cut-off value for the intended application
of the model is part of the art of modeling.

Exercise 2 Use your solution of Exercise 1 to estimate the median value of the maximum
degree in GSF (N, γ).

1.2 Generic scale-free networks

For given γ > 1 and N , we can use the procedure outlined in Section 2 of the module Ex-
ploring contact patterns between two subpopulations at this web site3 to construct a random
graph GSF (N, γ) whose degree distribution approximates (1): First randomly draw de-
grees ki according to the distribution (1), then attach ki stubs to i, and finally connect
them randomly to form the edges. If N is sufficiently large, this will give a random network
that is approximately scale-free and otherwise generic. We will refer to GSF (N, γ) as a
generic scale-free network and drop the adverb “approximately” for easier readability.

The properties of GSF (N, γ) will be explored in detail in the forthcoming module
Exploring generic scale-free networks. Let us just mention here that for large N the
graph GSF (N, γ) will be disconnected with probability very close to 1 and we expect a
significant proportion of the nodes to reside in connected components of size 2.

1.3 The preferential attachment model

Generic random scale-free graphs GSF (N, γ) are convenient mathematical abstractions that
can be relatively easily studied. It is not clear to what extent their properties mirror those
of approximately scale-free networks that are found in the real world. Take, for example,
connectedness. The airline transportation network that represents direct flights as edges
between airports (nodes) is presumably connected. At least that is its purpose. In this
respect, the airline network is very different from from GSF (N, γ), for which we predicted
a large number of connected components of size 2. On the other hand, a sexual contact

3http://www.ohio.edu/people/just/IONTW/
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network presumably would contain a large number of such components. At least this is the
idea of marriage.

Moreover, the construction of GSF (N, γ) may or may not reflect the actual processes
by which connections (edges) are formed in nature. As an alternative to starting from an
assumed degree distribution as in the construction of GSF (N, γ), we might try to model
the process by which actual connections are formed, and then mathematically derive the
expected properties of the resulting network, including the degree distribution. The pref-
erential attachment model of Barabási and Albert [4] does exactly that. It is motivated by
the growth of the World Wide Web. One can model this network by considering individual
web pages as nodes i whose degree ki is the number of other web pages that contain a link
to page i. Since links are directed, the resulting structure is a directed graph rather than a
graph, but we will ignore this difference in our discussion of the model.

The size of the WWW keeps growing all the time. Web pages that already have many
links pointing to them, such as Google or YouTube, accumulate new links at a higher rate
than less popular ones, such as the home page http://www.ohio.edu/people/just/IONTW/
of this module. In other words, the rich keep getting richer. Barabási and Albert [4]
modeled this pattern by assuming that we start with a small network of m0 nodes and
then successively add new nodes, one at a time. Each new node will be connected to m
of the previous nodes in such a way that the probability of the new node connecting to an
already existing one i is proportional to ki in the current network. They then showed that
after a long time of growth the network should exhibit approximately a power-law degree
distribution as in (1) with parameter γ = 3.

For specificity, here we will always assume that the m0 initial nodes form a complete
graph. The resulting networks with N total nodes will be denoted by GPA(N,m0,m).

1.4 Comparing generic scale-free networks with networks obtained from
the preferential attachment model

The fact that the preferential attachment model can only generate networks with γ ≈ 3
imposes limits on its applicability. Empirical studies of actual networks often indicate values
of γ that are strictly between 2 and 3. For example, for the distribution of the number of
links that point to a given web page, the paper [2] reported a value γ ≈ 2.1. In [1] the
authors point out that processes other than attachment of a new node play a role in network
formation. For example, links can be subsequently broken and/or be replaced by new links
between existing nodes. The preferential attachment model can be modified so that by
carefully choosing the parameters that govern these processes of rewiring, the value of γ
can be tuned to a specified values that are different from 3. Several other modifications of
the preferential attachment model have been studied. For readers who wish to learn more
about this topic we recommend [8] as an excellent introduction to the literature. Here we
will restrict ourselves to working with the original version of the preferential attachment
model.

It is interesting to compare the philosophies behind the constructions of GPA(N,m0,m)
and GSF (N, 3). Consider a randomly chosen node i. In GSF (N,λ), we randomly draw ki
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from a power-law distribution and attach ki stubs to node i. For a given stub at node j, the
probability that this stub will be combined with a stub for node i to form an edge {i, j} is
proportional to ki. Thus the degree of node i can be considered a measure of attractiveness
of node i in GSF (N,λ). This is actually very similar to what happens in the construction
of GPA(N,m0,m), except that the attractiveness of node i for node j is its degree in the
subgraph that is induced by nodes 1, . . . , j − 1, not its degree in GPA(N,m0,m) itself.
However, since in the construction of GPA(N,m0,m) the rich keep getting richer, a node
that has already a relatively high degree at the time when node j gets added will very
likely also have a relatively high degree at the end of the construction. Thus the difference
between the two models is rather subtle.

Let us look at the two constructions from the point of view of the growth of the WWW.
If you design a new web page j, your decision of whether or not to embed a link to an existing
page i will be driven by two factors: How interesting page i is, and whether you have actually
visited it. Your probability of having visited it may be assumed roughly proportional to the
number of links pointing towards it (the popularity of the web page). Whether or not you
find the page interesting is a subjective judgement, but it may be reasonable to assume that
more links will point to web pages that more people find interesting. Let us swallow our
pride: Most surfers of the web find YouTube more interesting than our pages on network
models of disease transmission.

If we were to model the WWW by GSF (N,λ), we would in effect assume that all
web pages have an intrinsic attractiveness and then generate random links accordingly. If
we choose γ = 2.1, this might give us a picture of the WWW that conforms even more
closely than GPA(N,m0,m) to the degree distribution reported in [2]. But it would remain
entirely unclear why the distribution of “intrinsic attractiveness” should follow a power
law, or why the parameter γ should be 2.1. The generic model may give us a realistic
network GSF (N, 2.1), but it does not explain the mechanisms by which the distribution
arises. In contrast, in the construction of GPA(N,m0,m), each of the initial nodes starts
out equally attractive, and there is no assumption that some nodes may be intrinsically
more interesting than others. Subsequent changes in attractiveness are entirely driven by
the current popularity. The approximately power-law distribution of the nodes emerges as
the network grows, and the postulated mechanism is sufficient to explain the distribution
and to predict the value γ = 3.

Since the philosophical differences between the two constructions are very subtle, we
should expect that GPA(N,m0,m) and GSF (N, 3) will have rather similar properties, and
in fact they do in many respects. In at least one aspect though there is a striking differ-
ence: The construction of GPA(N,m0,m) implies that the resulting graph will always be
connected, while GSF (N, 3) usually has many connected components of size 2.

This seems to make GSF (N, 3) a better candidate for modeling sexual contact networks,
but it is not immediately clear why this should be the case. Let us consider for example
the following network GEB. Its nodes represent all people who ever lived and were sexually
active on the Island of Eternal Bliss. This island was first settled in 1632 by a group
of m0 refugees from the Thirty Year’s War. An edge in GEB(N) connects two islanders if,
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and only if, they ever had sexual contact. In this model no rewiring of edges takes place.
The network only changes when new sexual partnerships are formed. One would naturally
assume that the islanders choose their sexual partners based on attractiveness. This process
of network growth certainly looks similar to the preferential attachment model.

Exercise 3 Explain which aspects of the growth of GEB may differ substantially from the
assumptions of the preferential attachment model. In particular, explain which of these as-
pects are likely to make GEB disconnected. Are there some important aspects in which GEB
would be expected to differ from GSF (N,λ) as well as from GPA(N,m0,m)?

2 Exploring the preferential attachment model with IONTW

Let us see how the preferential attachment model works. Open IONTW, click Defaults,
and change the following parameter settings:

network-type → Preferential Attachment
num-nodes: 20
lambda: 4
d: 2

Move the speed control slider to a very slow setting; adjust for comfortable viewing as
needed. Press New, sit back, relax, and enjoy the movie. When the movie ends, press
Scale to get a better view of the network.

Exercise 4 How are the input parameters lambda and d related to the parameters of the
network GPA(N,m0,m)?

Now use what you have learned in the previous exercise to set up creation of a net-
work GPA(20, 1, 1).

The graph GPA(N, 1, 1) is always a tree and thus contains exactly N − 1 edges (see, for
example, Exercise 9.42 of the online appendix to [6]). Thus the mean degree in a tree with

N nodes is equal to 〈k〉 = 2(N−1)
N ; for large N it is close to but a little smaller than 2. For

small N we get the following values:

N 1 2 3 4 5 6 7 8 9
〈k〉 0 1 1.33 1.5 1.6 1.67 1.71 1.75 1.78

(3)

Exercise 5 Upon pressing New you will see how the graph GPA(N, 1, 1) is built by adding
one node at a time. Record for each step the current degree of the node to which the new
node gets attached. Here the phrase “current degree” refers to the degree before the new
node gets attached.

Does the new node always get attached to the node with the current highest degree or
at least to a node with above-average degree? Explain in your own words in what sense the
attachment procedure is “preferential.”
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Now let us consider the degree distributions in networks that are obtained from the
preferential attachment model. In the default setting plot-metric → Degree Distribu-
tion you should see in the Network Metrics plot a distribution that is similar to the
one predicted by (1), with nodes of degree 1 having the highest frequency, and qk getting
smaller as k increases. Since the preferential attachment model predicts γ ≈ 3, in view
of (2) we would expect that q2 ≈ q1

8 and q4 ≈ q1
64 . Moreover, the solution of Exercise 2

indicates that the maximum degree should scale like
√
N , that is, should roughly increase

by a factor of 1.4 whenever we double N . The value of the maximum degree in a given
network can be found in the Network Metrics plot that shows 1 + max ki on the right of
the horizontal axis for the default setting plot-metric → Degree Distribution.

For N = 20 this pattern will not show up clearly though, due to finite size effects. Also,
to get somewhat reliable data, we should average over several instances of networks. Move
the speed control slider to the extreme right, and choose

num-nodes: 40, 80, 160

For each choice of num-nodes, create three networks with New. For each network,
record the maximum degree and the approximate percentages of nodes with degrees k =
1, 2, 4. You can estimate the latter by moving the cursor to the top of the relevant bars
in the Network Metrics plot and recording the value shown on the vertical axis. Do the
results appear consistent with the predictions of the preferential attachment model?

When trying to answer the above question, you may have found that samples of size 3 are
not large enough to draw reliable conclusions. Let us investigate larger batches of networks.

For each of the settings

infection-prob: 0
end-infection-prob: 1
num-nodes: 60, 120, 240, 480

define and run a batch processing experiment with 100 repetitions using the following
specifications:

Measure runs using these reporters:
max [count link-neighbors] of turtles

count turtles with [count link-neighbors = 1]

count turtles with [count link-neighbors = 2]

count turtles with [count link-neighbors = 4]

Setup commands:
new-network

Exercise 6 Analyze the output files by computing the means of the proportions of nodes
with degrees k = 1, 2, 4 and the mean of the maximum degree for each case. Do these means
reasonably well conform to the predictions that we derived in Subsection 1.1?

As we already explained in Subsection 1.1, even for relatively large N you cannot get per-
fect agreement with the degree distribution (1) that gives positive probabilities for all k ≥ 1.
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The distribution will only be approximately scale-free. Most likely, there will be occasional
upticks in the histogram that you see in the Network Metrics plot. Figure 1 is actu-
ally based on the degree sequence of two network GPA(N, 1, 1) that were created with our
software and shows this pattern. Note also that the slope of the regression line is -2.51975
for N = 100 and -2.65123 for N = 10, 000 nodes. The discrepancy from the theoretically
predicted value −3 = −γ of [4] appears to be due to finite size effects. The theoretical
predictions were made under the assumption of very large network size N , and a value
of N = 10, 000 may be too small to get a good approximation to γ = 3. Note that the
approximation is somewhat better for the larger of the two values of N that we explored.

3 Disease transmission on networks obtained from the pref-
erential attachment model

In scale-free networks, there are a few highly connected nodes (the hubs), while most nodes
have very small degrees. This naturally suggests the following questions:

(a) Will this structure speed up or slow down the spread of infections compared to what
the corresponding compartment level models would predict?

(b) Will it make major outbreaks more or less likely?

(c) If major outbreaks do occur, will they tend to have larger or smaller sizes than in
corresponding compartment-level models?

(d) Which vaccination strategies will work best if the contact network is approximately
scale-free?

Here we will explore questions (a)–(c) for contact networks that are constructed un-
der the preferential attachment model, and in the next section we will do the same for
question (d).

Open IONTW, click Defaults, move the speed control slider to the extreme right and
use the following parameter settings:

model-time → Discrete
infection-prob: 0.1519
end-infection-prob: 1
network-type → Preferential Attachment
num-nodes: 200
lambda: 4
d: 4
auto-set: On

This sets up a next-generation SIR-model on networks GPA(200, 4, 4).
Use New to create a network and then click Metrics. Scroll up the Command Center

to look up R0 and verify that R0 = 1.2 for our model.
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If everything looks fine, we are ready to Go. Do a few runs to see whether we get major
or minor outbreaks. Most likely, you will see some outbreaks that you would confidently
classify as major and as well as some that you would confidently classify as minor.

Now, let us have a glance at the corresponding compartment-level models. Change the
settings to:

infection-prob: 0.006031
network-type → Complete Graph

Click New, then click Metrics. Look up R0 and convince yourself that we still have
R0 = 1.2. Click Go and do a few simulation runs. What do you observe? Do major
outbreaks become more likely to occur? Are your observations consistent with your expec-
tations?

Now, it’s time to get serious and run batches of 100 simulations, one each for both
of the parameter settings for which we did preliminary explorations. Use the following
specifications:

Measure runs using these reporters:
count turtles with [removed?]

ticks

Setup commands:
new-network

Exercise 7 In the output files of both of your experiments, sort the data by the column
labeled count turtles with [removed?] and find a meaningful grouping of your data into
those corresponding to minor and major outbreaks.

(a) Record the proportion of simulations in which you observed a major outbreak.

(b) Calculate the mean duration of major outbreaks.

(c) Calculate the mean final size for the group of major outbreaks.

(d) How do the results differ between the two models? Do the observed differences appear
to be statistically significant or could they be attributed to random fluctuations?

Let us increase the value of R0 and see whether we can get similar observations. Explore
the following parameter settings:

infection-prob: 0.25
network-type → Preferential Attachment

and

infection-prob: 0.0099246231
network-type → Complete Graph

For both settings, create a network with New, click Metrics, and verify that R0 =
1.975.

Exercise 8 With each set of settings, run a batch of 100 simulations using the same spec-
ifications as before. Repeat the data analysis of Exercise 7 for the outputs.
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Now we can try to answer the questions that were mentioned at the beginning of this
section:

(a) Will this structure speed up or slow down the spread of infections compared to what
the corresponding compartment-level models would predict?

(b) Will it make major outbreaks more or less likely?

(c) If major outbreaks do occur, will they tend to have larger or smaller final sizes than
in corresponding compartment-level models?

Well, based on the observations in our simulations, we cannot answer the latter two
questions for sure, because for different parameter settings we did not observed statistically
significant differences or a consistent pattern of differences between the two types of model
for the two choices of R0. However, based on our results, it seems like the mean duration of
major outbreaks on contact networks obtained from the preferential attachment model is al-
ways shorter than that of outbreaks on the corresponding compartment-level models. Thus,
a reasonable guess is that this structure will speed up the spread of infectious compared to
what the corresponding compartment-level models would predict.

Exercise 9 Give an intuitive explanation for this answer to question (a).

We already know that in networks constructed according to the preferential attachment
model, some nodes will have much larger degrees than others, while in complete graphs that
correspond to compartment-level models, every node has the same degree. Thus one may
want to investigate for the preferential attachment model whether the degree of the index
case will make a difference. What would be your guess?

Let’s use simulations to check whether you guessed correctly. Change the settings as
follows:

infection-prob: 0.25
network-type → Preferential Attachment
min-deg: 9

The last option ensures that the index case will always be chosen among the nodes with
degree at least 9.

Exercise 10 Run a batch of 100 simulations with the specifications we used before, and
analyze your output by answer the same questions as in Exercise 7.

Wow! With the degree of the index case lager than 8, an outbreak is very likely to be
major, almost for sure!

Thus, we really don’t want the index case to be a node with relatively higher degree.
Also, the subsequent spread of the infectious disease may crucially depend on secondary
infections caused by nodes with high degrees. Wouldn’t it be great if these nodes don’t
contribute to propagating the infection?

This gives us a clue of how one might design a good vaccination. We will investigate in
the next section how well this might work.
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3.1 Vaccination strategies for scale-free contact networks

The networks GPA(N,m0,m) are connected. As a warm-up for this section, let us explore
what removal of a certain fraction of randomly chosen nodes does to the connectedness of
the network.

Open IONTW, click Defaults, move the speed control slider to the extreme right, and
use the following parameter settings:

network-type → Preferential Attachment
num-nodes: 50
lambda: 2
d: 2

Press New to create an instance of GPA(50, 2, 2), and then press Scale for better
viewing in the World window.

The graph you see is connected. Let us try to make it disconnected by randomly
removing some nodes. Choose the parameter settings

set-state-to → Removed
set-state-by → Number of nodes
num/frac: 10
min-deg: 0

Press Set to immunize 10 randomly chosen nodes and see what happens. Repeat a few
times by pressing first Reset and then Set. Do the subgraphs induced by the green nodes
tend to stay connected except for the occasional isolated node?

Now let us immunize 25 randomly chosen nodes. Set

num/frac: 25

Press Reset and then Set a few times. What do you observe?
You may see a few more isolated green nodes, but most likely the vast majority of the

green nodes will still form a connected subgraph, despite the fact that we have removed
half of all nodes! You have discovered a very important property:

In scale-free networks, random removal of nodes is unlikely to destroy con-
nectedness of the largest component.

Next let us remove 10 of the hubs, where we will consider a node a hub if it has degree
at least 4. Set

num/frac: 10
min-deg: 4

Press Reset and then Set a few times. What do you observe?
Now the subgraphs induced by the green nodes have a relatively large number of small

connected components. You have discovered another very important property:

In scale-free networks, random removal of a certain fraction of the hubs will
destroy the largest connected component.
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These properties are very important if one wants to prevent transportation or commu-
nication networks with approximately scale-free degree distributions from becoming discon-
nected. At any given time some fraction of all internet servers is down, but this does not
perceptibly affect the functionality of the internet. But a targeted attack on a significant
proportion of the hubs could disrupt the internet.

Here we are not interested in preserving connectivity though. The purpose of targeting
vaccination at a certain subset of nodes is precisely to disrupt the connectivity of the
unvaccinated hosts as much as possible. Let us see whether we can put the properties that
you just discovered to good use in designing optimal vaccination strategies for scale-free
networks.

In the remainder of this section we will examine several possible vaccination strategies
for GPA(200, 4, 4). Change the following parameter settings:

infection-prob: 0.25
end-infection-prob: 1
num-nodes: 200
lambda: 4
d: 4
auto-set: Off

This will set up a next-generation SIR-model with 〈k〉 = 7.9 and R0 = (0.25)(7.9) ≈ 2.
First let us run a batch processing experiment to get baseline data for the situation

where no control measures whatsoever are implemented. For this and all subsequent batch
processing experiments in this module use

Repetitons: 100
Measure runs using these reporters:

count turtles with [removed?]

Make sure your output file names are short and distinctive so that in the subsequent
data analysis you can easily see what is where. Here you may want to use something like
“no-vacc.”

For this first experiment, use

Setup commands:
new-network

ask n-of 1 turtles with [susceptible?] [become-infectious]

Now run the experiment. It may take a while before it is completed. Get yourself a cup
of coffee. Text your friends. Call your dad.4

Since R0 ≈ 2, the herd immunity thresholds for the compartment-level version of this
model would be HIT ≈ 0.5. Let us get a second set of baseline data for vaccinating
200HIT = 100 randomly chosen nodes. Edit your previous experiment by inserting a
second line in your Setup commands that you will then modify in subsequent experiments:

Setup commands:

4This message brought to you by Correebugs, KeepShort, and Revizon, proud sponsors of excellence in
publishing.
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new-network

ask n-of 100 turtles [ become-removed ]

ask n-of 1 turtles with [susceptible?] [become-infectious]

Run the experiment and keep your data for subsequent analysis.
Next let us assume that we have only 40 or 20 doses of vaccine. We will test what happens

if we use them for vaccinating randomly chosen nodes. Edit your previous experiment by
changing

Setup commands:
new-network

ask n-of 40 turtles [ become-removed ]

ask n-of 1 turtles with [susceptible?] [become-infectious]

Run the experiment and then another one for vaccinating only 20 instead of 40 randomly
chosen nodes.

Now let us see what happens if we use our 20 doses of vaccine to vaccinate 20 randomly
chosen hubs. As there is no obvious cutoff for the minimum degree above which a node
would qualify as a hub, let us first consider all nodes i with degree ki ≥ 7 as hubs, and then
all nodes i with degree ki ≥ 10.

Edit your previous experiment by changing

Setup commands:
new-network

ask n-of 20 turtles with [count link-neighbors > 6][ become-removed ]

ask n-of 1 turtles with [susceptible?] [become-infectious]

Run the experiment, and then run another one with

Setup commands:
new-network

ask n-of 20 turtles with [count link-neighbors > 9][ become-removed ]

ask n-of 1 turtles with [susceptible?] [become-infectious]

Finally, let us examine the effect of vaccinating all nodes i with degree ki ≥ 10. Edit
your previous experiment by changing

Measure runs using these reporters:
count turtles with [removed?]

count turtles with [count link-neighbors > 9]

Setup commands:
new-network

ask turtles with [count link-neighbors > 9][ become-removed ]

ask n-of 1 turtles with [susceptible?] [become-infectious]

Now that you have run enough experiments to bring up your caffeine levels to high
mental alertness, catch up on your texting, and chat with your entire family, you are ready
to focus on analyzing the data.
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Exercise 11 (a) Analyze your data. For each data set, sort the output column from lowest
to highest. Try to discern a distinct gap between minor and major outbreaks. If there is
no gap, record the minimum, maximum, and overall mean. If there is a gap, record the
number of outbreaks that you classified as minor and the maximum number of hosts who
were removed in the minor outbreaks. For the major outbreaks, record the minimum and
maximum numbers, as well as the means. Express these means in terms of the proportion
of unvaccinated hosts who experienced infection.

(b) How would you describe the effectiveness of the various vaccination strategies that you
explored?
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