A quick tour of IONTW*

Winfried Just’ and Ying Xin?

February 8, 2016

In this module we guide you through some of the capabilities of IONTW. Highlights
include the types of networks supported, setting up various types of models of disease
transmission, observing the resulting dynamics, and collecting statistics on the outcomes.
Along the way, the module also reviews some basic notions of graph theory. Sample solutions
for the exercises are included at the end.

1 First tour stop: Networks

Before you can work through any of our modules, you need to install NETLoco, IONTW,
and all supporting files in one directory on your computer. After you have done so, open
the program by double-clicking on the file IONTW.nlogo in the directory where you installed
the software.

The IONTW interface that will eventually appear should look like in Figure 1. It has a
lot of controls for various parameter settings. We will cover their use later in this module.
Right now let us focus one the big panel in the middle. This is called the World window
and is initially black. When you click New, a picture of your model of the contact network
will appear in this window.

Contact networks are modeled by simple graphs. From the mathematical point of view,
a simple graph is a pair G = (V(G), E(G)), where V is a nonempty set of nodes or vertices,
while E(G) is a set of edges, that is, unordered pairs of distinct nodes. Thus each edge will
be of the form {i,j} with 4,j € V(G) and i # j. IONTW represents nodes by little colored
discs and edges by straight line segments that connect the discs.

When you click New in the default settings of IONTW you will see a lot of green
disks that represent nodes, but no distinguishable edges. Let us change the parameter
num-nodes to the right of the World window. Set

num-nodes: 20

In this and all subsequent modules we will only specify the parameter settings
that the reader is supposed to change. The implicit assumption is that all other

*©Winfried Just and Ying Xin 2014
TDepartment of Mathematics, Ohio University, Athens, OH 45701 E-mail: mathjust@gmail.com
tDepartment of Mathematics, Ohio University, Athens, OH 45701 E-mail: yx123812@ohio.edu

Figure 1: Opening screen of IONTW.

parameters are kept as in the previous step of the module. Therefore it is
important that the user always works through the explorations and exercises of
a given section of a given module exactly in the order in which they are written.
If you need to interrupt your work, you can save a copy of IONTW with the
current parameter settings by the option File — Save As in the upper left corner
of the interface.

Click New again. This time a graph with clearly distinguishable edges will appear.
Next see what happens if we change

num-nodes: 80
and then click New.

Exercise 1 Why did we not see any distinguishable edges when we first clicked New right
after opening IONTW? You may find out by clicking Defaults and noting the default setting
of num-nodes.

Now let us take a closer look at a very small network. Change
num-nodes: 4

and then click New. A nice graph with 6 edges will appear. As you can see, this
graph contains all possible edges between its nodes. It is an example of a complete graph.
Notice that the menu option network-type in IONTW’s interface is set to Complete
Graph, which is the default. If we want to find the representation of the graph in the
World window as a mathematical object, we will need to see how the nodes are labeled.
Press Labels to find out. Notice that the vertex set of this graph is V(G) = {0, 1,2, 3}.
While in mathematical explorations of networks and models of disease transmission on
them it will usually be convenient to assume that the nodes are labeled 1,2,..., N, the
NETLOGO software always assigns labels 0,1,..., N — 1. The complete graph with vertex
set V =1{0,1,...,N — 1} will be denoted by Ky.!

'In some of our mathematical explorations we may for convenience use the symbol Ky also for the
complete graph with vertex set {1,2,...,N}.

Exercise 2 Write out the edge set E(Ky) of the graph K4 in mathematical notation.

IONTW gives you a lot of information about the properties of the network that is
currently displayed in the World window. By default, the plot Network Metrics gives
information about the Degree Distribution of the graph. The degree k; of node i is the
number of nodes j that are adjacent to ¢, that is, connected to ¢ by an edge. The plot shows
a histogram of the numbers of vertices with degree k for all relevant k. In K4, the degree
of each node is 3, and the histogram shows a single vertical bar of height 4. Note that
the number 4 on the horizontal axis of this plot is obtained by adding 1 to the maximum
degree; we will need to keep this feature in mind when we explore degree distributions of
larger graphs.

Graphs in which each node i has the same degree k; = k are called k-regular or simply
reqular. Each complete graph Ky is a k-regular graph with £k = N — 1.

Now let us see what other types of graphs IONTW allows us to explore. Click on
Complete Graph. A long list of network options will appear. Most of them will be
explored in detail in subsequent modules; here we will give you just a few highlights. Change

num-nodes: 12
network-type — Empty Graph

After clicking New you will see a graph with no edges whatsoever. Such graphs are
called empty graphs as the set of edges is empty. An empty graph with N nodes is often
denoted by Ky, as the edge set is the complement of the complete graph with the same
vertex set. All nodes in Ky are isolated; that is, each node i has degree k; = 0. Note that
the vertical bar in Network Metrics plot for the Degree Distribution ranges from 0
to 1 on the horizontal axis in this example.

Exercise 3 Is it always true that Ky # Ky ?

Now change

network-type — Nearest-Neighbor 1

d: 1

After clicking New you will see an example of a one-dimensional nearest-neighbor net-
work: Each node is connected with its 2 nearest neighbors. Next change

d: 2,3

When we write like this in our modules, we want you to first change d to 2, create a
network and explore it, then change d to 3, create a New network and explore it.

What effect does the change of the parameter d have? A one-dimensional nearest-
neighbor network with parameter d = d and num-nodes= N will be denoted by G} (N, d).

Exercise 4 (a) How is the parameter d related to the degrees of the nodes in G (N, d)?
(b) Find a sufficient and necessary condition for {i,j} to be an edge in G (N, d).

Change
num-nodes: 60

After clicking New you will see a graph whose edge set is difficult to make out. However,
inspection of the Degree Distribution in the Network Metrics plot will show you that
the degree of each node is still 6 (as long as you retained the parameter setting d = 3 as
per our admonition above!). It is often a good idea to double-check the visual information
in the World window against this plot.

Next change

network-type — Nearest-Neighbor 2

d: 1

and click New. You will see an example of a two-dimensional nearest-neighbor network
G% N (N, 1). In these networks, nodes are (usually) arranged in a rectangular grid.

This graph is no longer regular. It appears that the nodes in the corners have degree 2,
the other nodes along the edges have degree 3, and the nodes in the middle have degree 4.
Inspection of the Degree Distribution in the Network Metrics plot should confirm this
observation.

Let us see what happens if we change

d: 3

After clicking New we get a lot of diagonal edges. It appears from inspecting the World
window that the nodes in the corners have degree 5, but when we move the cursor along

the horizontal axis of the Degree Distribution in the Network Metrics plot to the left
edge of the lowest bar we find that the lowest degree in this network is 8.

Exercise 5 How can you explain this discrepancy?

Let us look at some examples of networks G%; 5 (N, 3) for other choices of N. Visualize
the networks for

num-nodes: 36, 33, 22, 23

and record the number of rows and columns in the resulting grids.

IONTW determines the numbers m of rows and n of columns by factoring N = mn so
that m < n and m is as large as possible. In particular, if N is prime, we don’t get much
of a grid at all!

A path in a graph G from node iy to node iy is a sequence P = (ig, i1, .. .,4¢) of vertices
such that {i,,i,+1} is an edge in G for all r < £. The length ¢ of the path P is the number
of edges in the path. The path P is simple if the vertices ig,i1,...,%s are all distinct. Let
us look at some examples. Change

num-nodes: 6

d: 1

Press New and look at the resulting network. P; = (0,2,3,5) is a simple path in this
network; P, = (0,1,3,2,4,5,3) is also a path, but not a simple one, and P; = (0, 1,2) is not
a path as {1,2} is not an edge. The distance d(i,j) between nodes i, j is the length of the

shortest path from node ¢ to node j. For example, in the graph in your World window, we
have d(0,5) = 3 and d(1,2) = 2. Any sequence (i) is considered a path of length 0, so that
d(i,1) = 0 for any node ¢ in any graph G.

Change

plot-metric — Shortest Paths

After clicking Update you will see the distribution of the distances in the Network
Metrics plot. It ignores distances 0, and shows that there are 14 ordered pairs (i, 7) with
distance d(i,j) = 1. Nodes i, 7 will have distance d(i,j) = 1 if, and only if, {4,j} forms an
edge. For the graph G% 5 (6,1) in your World window this gives 14 ordered pairs (4,) as
each of the 7 edges {1, j} corresponds to 2 ordered pairs (i,j) and (j,7). Moreover, there are
4 ordered pairs (i, j) of vertices in opposite corners with d(i,j) = 3, and 12 ordered pairs
(i,7) of vertices with d(i,j) = 2.

If no path from vertex i to vertex j exists in a given graph G, then we define d(i, j) =
A graph such that d(i,7) < oo for all nodes 4, j is called connected; the graph G?VN(6, 1) in
your World window is an example.

Now consider the path Py = (0,1,3,2,0) in G, (6,1). It has length ¢ = 4, and all
vertices ig,1,...,4p_1 are distinct, while ig = ip. A path with this property is called a
cycle. In this definition we require that ¢ > 3. The path P; = (0,1,0) would not be
considered a cycle. Graphs without cycles are called acyclic; connected acyclic graphs are
called trees.

Let us look at an example of a tree. Change

Q.

network-type — Regular Tree

lambda: 3

d: 2

Click New. You will see a rather ugly-looking graph. Move the speed control slider at
the top from is default setting normal speed to the extreme right. Then press Spring.
This will give a nicer shape to your graph after a while. When the graph has taken a nice
shape, press Spring again and then Scale to make it better fit your World window. You
will see a connected acyclic graph, that is, a tree.

The structure of trees is best understood if we single out one vertex and call it the root.
IONTW always makes node 0 the root for network type Regular Tree. The set of nodes
at a distance ¢ from the root is called the ¢-th level of the tree and will be denoted here
by Ly. For the example in the World window we get

Ly ={1,2}, Ly=1{3,4,56}, Ls3={7,8,9,10,11,12,13,14}.

For £ > 3 we have Ly = () in this example. The largest ¢ for which Ly, # () is called
the height of the tree. Note that the input parameter lambda controls the height in this
network type. The nodes at the highest level all have degree 1 and are called leaves. For
each node i that is not a leaf, the number of nodes at the next higher level that ¢ is adjacent
to is controlled by the input parameter d.

Now change

network-type — Erdos-Renyi
num-nodes: 10
lambda: 1.5

Click New a few times and observe what happens. While the network-type options
that we had explored so far always gave us a fixed network for the chosen parameter settings,
the option Erdos-Renyi gives us random networks that may change every time we click
New. The particular type of random graphs that are created by this option are called
Erdés-Rényi random graphs, named after the two Hungarian mathematicians who first
studied them in detail in [1]. The graphs that you see in your World window after clicking
New are instances of Erdés-Rényi random graphs Ggr(N, A) that are drawn from a certain
probability distribution that is specified by the parameters N = 10 and A = 1.5. Figure 2
shows an example of such a graph.

G2 tdso (3|

Figure 2: An instance of an ER random graph Ggg(10,1.5).

Notice that the graph in Figure 2 is not connected. For example, there is no path
from node 6 to node 1. The graph has three connected components, where the connected
component of a node ¢ in a graph G is defined as the subgraph whose vertex set consists
of all nodes j that are at a finite distance from ¢ and whose edge set comprises all edges
in the original graph G that connect these nodes. Connected components are examples of
induced subgraphs; for details on this notion see [2]. Thus the connected components G5, Gg
of nodes i = 5, 6 respectively of the graph in Figure 2 are:

G5 = ({5’ 9}7 {{57 9}})7 GG = ({6}7 Q))
Exercise 6 Find the connected component of node 1 in the graph G of Figure 2.

You can visualize the connected components of a graph in the World window by using
Spring and Scale as explained above.

The parameter A in the construction of Ggr(N, \) represents the expected mean degree,
denoted by (k), of an instance. For particular instances the mean degree (k) may be different
from A, but when we average over many instances, we should get a value very close to A.
Let us see how this works out.

Click New and then Metrics. Repeat about 8 times. Then click on the double-
arrow icon on the Command Center bar. The window that pops up gives you a lot
of statistics that IONTW collects when you click Metrics. The value of Mean degree
gives you (k) for each instance. The actual values will be different from 1.5, but when
you scroll down and average over all networks for which you collected data, you should get
a value that is close to 1.5. We will discuss some of them later in this module and the
remaining ones in later modules. Right now, record the values for Number of connected
components and Diameter of the largest component for the network that is currently
shown in your World window. It should be described by the last data set in the Command
Center window. Look at the graph in your World window and check whether the number
of connected components matches the data that IONTW reported. The diameter of a
connected graph is the maximum distance between any two nodes. Check whether the
value that IONTW reported for Diameter of the largest component matches the one
that you would derive from inspecting the largest connected component of the graph.

You can delete the entries in the Command Center window by clicking Clear and
minimize it by clicking the double-arrow icon again.

Let us look at a larger example of an Erdds-Rényi random graph. Change

num-nodes: 50

lambda: 2

Click New. For the graph that you now see in the World window you can still find the
number of connected components and the diameter of the largest one by visual inspection
after altering its shape with Spring and Scale as described above. However, especially for
the diameter of the largest connected component this would be a bit tedious. After clicking
Metrics you can easily look these numbers up in the Command Center.

Let us observe another important feature of the graph in your World window: While
the mean degree (k) should be close to 2, not every node i will have degree k; = 2. Some
nodes ¢ will be isolated and will have degree k; = 0, some other nodes ¢ will have degrees
k; > 2. The Degree Distribution in the Network Metrics plot will show you how many
nodes 7 with degree k; = k there are for each k. The highest bar will most likely occur for
k =2 or for k = 1. You may want to click New a few times and observe how the degree
distribution changes from instance to instance.

If we want a graph where each node has degree exactly 2, we need to use a different
option for network-type. Change

network-type — Random Regular

After clicking New, visual inspection of the graph that you see in your World window
will indicate that each node in this network has degree 2, and the Degree Distribution in
the Network Metrics plot will confirm this observation. This graph is otherwise random.
It has been drawn from a distribution that gives instances G reg(V, A) with parameters N =
50 and A = 2. You may convince yourself about the inherent randomness by clicking New
a few times. The instances G'reg(IN, A) of this construction are A-regular graphs; we refer
to them as random \-regular graphs.

The options Small World 1, Small World 2, Preferential Attachment, Generic
Scale-free, Spatially Clustered for network-type give yet other types of random
graphs; we will cover them in detail in later modules.

IONTW also allows you to import custom networks. To see how this works, click Load
and open the file sample-network-detailed.txt that you downloaded together with the
code for IONTW. A network will appear in the World window. In this case we specified
all the details of the network, including some colors for the nodes whose meaning will be
discussed in the next section.

You can also specify a degree distribution instead of the details of the network. Change

network-type — Custom Distribution
num-nodes: 80

Then click Load and open the file distribution.txt. This will not immediately create
a network, but will show you in the Network Metrics plot a distribution of degrees that
you ideally would want in your network. Commit this histogram to memory or make a
screenshot of it for future reference.

Now click New. One of two things may happen: The World window stays black and
you see an error message Degree sequence not realizable as an undirected graph!
in your Command Center. This will sometimes happen due to technical reasons that will
be explained in a later module. In this case, simply click New repeatedly until a network
appears in your World window. The Network Metrics plot will now show you the actual
degree distribution. It should be rather similar to the ideal one we specified in the file
distribution.txt, but most likely there will be small discrepancies. By clicking New a
few more times you can observe how the network and its degree distribution change from
instance to instance. This option gives you yet another method for constructing random
networks.

2 Second tour stop: Initial states

Open IONTW, click Defaults, move the speed control slider to the extreme right, and
change

network-type — Regular Tree

lambda: 3

d: 2

Click New to create a network, press Spring and wait until it has taken a nice shape.
Then press Spring again, followed by Scale to make the network better fit the World
window. Finally, press Labels to see how the nodes are numbered.

We already looked at this network in the previous section. In our intended applications
of IONTW, the graphs represent contact networks and each node represents one host in a
population. Green nodes represent susceptible hosts.

Now click Set. This will make one host infectious, which is signified by a red disc. We
now have a prototypical initial state that corresponds to introduction of a single infectious
host into an otherwise susceptible population. Much of our work in subsequent modules,
and of work in mathematical epidemiology in general, focuses on the spread of infections
within the given population for this type of initial state. The initially infectious host is
often called the index case or patient 0.

Note that all the edges that connect the index case with other hosts are red, while the
remaining edges are white. A red edge indicates that an effective contact between the two
hosts that are represented by its endpoints will be successful (from the point of view of the
pathogens), which means that it will lead to a new infection. Effective contacts along white
edges will not be successful in this sense.

Now press Reset, followed by Set. Repeat a few times and observe how the number
of the index case and the red edges change. By default, IONTW chooses the index case
randomly.

We often will want to have more control over the choice of the index case. In this
example, we may want to focus our attention on situations where the host is not a leaf,
that is, has degree at least 2. We can enforce this by changing

min-deg: 2
Press Reset, followed by Set. Repeat a few times and observe which nodes are chosen
as index cases. The selection is still random, but leaves are no longer chosen.

If we want to ensure that a particular node 7, node 0 for example, becomes the index
case, we can proceed as follows. Change

set-state-by — Vector from input

Click Reset, then Set. In the dialogue box that appears enter [0] and click OK. Be
sure to include the square brackets.
Let us return to the setting

set-state-by — Number of nodes

Click Set without clicking Reset first. Then click Set a couple more times. Now
several nodes will be infectious. Note that the edges that connect two infectious nodes are
also white. While pathogens will be transmitted between hosts that have an effective contact
along such an edge at the current time, this will not lead to a new infection. Similarly to
contacts between two susceptible hosts, no effective contact between two infectious hosts
will be successful from the point of view of the pathogens.

Repeatedly clicking Set to get an initial state with more than one infectious host is
tedious. Let us try out a better method by changing

num/frac: 5

min-deg: 0

Click Reset and then Set to see how this works.

Certain control measures, such as vaccination, can be modeled by setting the state of
some hosts prior to an outbreak to “Removed.” To see how this can be implemented, change

set-state-to — Removed

Click Reset and then Set. You should see a state with 5 removed and no infectious
hosts. Removed hosts are represented by grey discs, and the edges that have at least one
grey endpoint are also displayed in grey as they play no role in the spread of the disease. In
order to introduce an index case into such a partially vaccinated population, let us return
to the setting

set-state-to — Infectious
num/frac: 1

Click Set without first clicking Reset.
Some of the options for setting the initial state that we have explored so far can be
automated by using the auto-set switch. Change

network-type — Nearest-neighbor 2
d: 1
auto-set: On

Click New a few times and observe what happens.

Exercise 7 How would you change the settings so that you can create random initial states
in which exactly two of the nodes in the middle of this network will be initially infectious
while all other nodes are susceptible without using the Set button?

3 Third tour stop: Models of disease transmission

Open IONTW and click Defaults. Move the speed control slider to the middle of the slower
range; adjust for comfortable viewing as needed. Change the following parameter settings:

model-time — Continuous
num-nodes: 10
auto-set: On

Click New to create a network and an initial state with one infectious node. This will
set up a continuous-time model of type SITR, as the default setting On for gain-immunity
specifies that hosts will gain permanent immunity upon recovery and the default setting
Off for latent-period specifies that there is no E-compartment. The default choice of
Complete Graph for network-type gives a model that embodies the uniform mixing
assumption.

10

We should expect that when we simulate an outbreak in this model, we will see some
new infections (nodes turning red), and eventual removal of each infectious node, which
will cause these nodes to turn grey. At the end of the outbreak we may or may not have
some nodes that escaped infection and stayed susceptible, that is, green. Let us start a
simulation by clicking Go and see what will happen. You can repeat the experiment by
clicking New or Last and then Go again. The difference in this case is that Last will give
you an initial state with the same index case as before, and New will give an initial state
with a randomly chosen index case.

With high probability you will observe that all nodes eventually turn grey, that is, all
hosts experience infection during the outbreak. To see why this should be so, press Metrics
and then look up the value RO in the Command Center. The reported value for RO shows
that in this model, the basic reproductive ratio can be estimated as Ry > 5, which is very
high. Let us change

infection-rate: 0.14

This will drastically decrease the rate 8 at which a given pair of adjacent hosts makes
effective contact. Click New, then Metrics, and look up the value of Ry for this new model
in the Command Center. It should be slightly larger than 1. Run about 5 simulations
by clicking Go and then New. Observe the effect of the change in the parameter S on the
outcomes of the simulations.

Now let us add an E-compartment to our model. Change

end-latency rate: 1
latent-period: On

Click New, then Metrics, and convince yourself that the change in the model does not
alter the estimate of Ry. The new model is of type SEIR though, and susceptible (green)
hosts will first enter the “Exposed” state before eventually becoming infectious (red). Think
about this state as a traffic light that has changed from green to yellow before eventually
switching to red. Click Go and observe what happens. Repeat a few times.

Now let us set

end-infection-rate: 0

Click New. In the new model, infectious hosts leave the I-compartment at a rate of
a = 0, which is a mathematician’s way of saying “never.” The model we have set up is
of type SEI. When you try to compute Metrics for such a model, you will get an error
message. The reason is that for SI- and SEI-models, Ry is undefined. If you do get
this message, you can return to the interface by first clicking Dismiss and then the tab
Interface.

Now start a simulation with Go and observe what happens: Eventually, the whole
population will be in the I-compartment and will never leave it. Take a look at the Disease
Prevalence plot. It shows you by means of color-coded curves, how the percentages of
nodes in the S-, E-, and I-compartments changed over time during the simulation.

So far we have explored only continuous-time models. Now let us explore some discrete-
time analogues. Change

11

model-time — Discrete

Now we need parameters that are probabilities instead of rates. We can convert the rates
automatically into corresponding probabilities by pressing Discrete Approx. IONTW
will compute corresponding values of transition probabilities and put them into the fields
infection-prob, end-infection-prob, and end-latency-prob. We should expect similar
outcomes of the simulations for the discrete and continuous versions of our SEI model.
Click New, then Go, and observe what happens.

All nodes will eventually turn red and stay red, but when observing the Disease Preva-
lence plot, you will see that in the discrete version IONTW no longer terminates the sim-
ulation automatically while there are still infectious host. You will need to terminate it
manually by pressing Go again.

Let us set up and run a discrete-time analogue of the SEIR-model that we explored
previously. Change

end-infection-rate: 1

and press Discrete Approx. For these parameter choices we should get a model with
a very similar value of Ry as in the continuous-time version. You may want to confirm this
by clicking New, then Metrics, and looking up the value of Ry in the Command Center.
If you enlarge it with the double-arrow icon you can easily compare the new value of RO
with the one for the previous model.

For an almost identical value of Ry we should expect similar outcomes of the simulations.
You can try to confirm this prediction by simulating a few outbreaks. However, data on
very few outbreaks are not very reliable and you might want to collect statistics on a large
batch of simulations. In the next section we will introduce a tool for conducting such
investigations.

One interesting class of discrete-time models are next-generation models. In these mod-
els we always set end-infection-prob to 1. We cannot obtain such models by using the
automatic conversion Discrete Approx from continuous-time models and need to enter
the probabilities manually. Let us set up a next-generation SFEIR-model by changing:

time-step: 1

infection-prob: 0.15

end-infection-prob: 1

end-latency-prob: 0.1

The input parameter time-step controls how one step of the discrete model is related
to NETLOGO’s internal time unit of a tick and may impact the quality of the display.

The new transition probabilities will give a model with a slightly larger Ry than previ-
ously. Since end-latency-prob is small relative to end-infection-prob, we should expect
that nodes stay yellow for much longer than they stay red. Click New and then Go and
observe how this prediction plays out.

Now change

infection-prob: 0.05
gain-immunity: Off

12

latent-period: Off
num-nodes: 50
num/frac: 10

Since gain-immunity is switched Off, hosts will become susceptible again upon ces-
sation of infectiousness. We also have eliminated the E-compartment by switching latent-
period Off. Thus the model we have set up is of type SIS. Press New, then Go, and
observe what happens. Nodes will oscillate in irregular patterns between the susceptible and
the infectious state, the Disease Prevalence plot will show fluctuations in the percentages
of infectious and susceptible nodes. Most likely, there will be no natural termination of the
outbreak; you will need to stop the simulation by pressing Go again.

So far, we have only explored models where the contact network was chosen to be a
complete graph. As our final example in this section, let us set up a next-generation SEIS-
model on a two-dimensional nearest-neighbor network by changing the following parameter
settings:

infection-prob: 0.7
end-latency-prob: 0.5

latent-period: On

network-type — Nearest-neighbor 2
num-nodes: 100

d: 1

num/frac: 3

Click New, then Go, sit back, relax, and enjoy the movie!

4 Fourth tour stop: Batch processing

Open IONTW and click Defaults. Change the following parameter settings:

model-time — Continuous
num-nodes: 10
auto-set: On

This will set up the STR-model that we had already explored at the beginning of the
previous section. There we found by running a few simulations that during a simulated
outbreak the whole population tends to experience infection, with each node eventually
becoming grey. Will this always be the case? If not, what is the probability that some
nodes will escape infection? If all nodes will eventually become removed, how long will this
take on average?

You can explore these questions with the methods that we covered in Section 3 by
running several simulations and collecting statistics. The duration of a given simulated
outbreak, in NETLOGO’s internal time units of ticks, can be found after termination of
each run on the horizontal axis of Disease Prevalence plot. You may want to simulate a
few outbreaks with clicking New and then Go. You will observe significant variability in
the durations of simulated outbreaks.

13

It becomes clear that for reliable answers to the above questions we will need to collect
statistics on a large number of outbreaks. Doing this by manually analyzing many individual
runs would be extremely tedious. Fortunately, NetLogo has a built-in feature called “batch
processing” that will allow you to collect such statistics relatively easily. To use this feature,
open

Tools — BehaviorSpace

A dialogue box with the title BehaviorSpace will appear. It allows you to either define
a New experiment or Edit an existing one. Right now click on New in the dialogue box.
Another dialogue box with the title Experiment will appear. In this dialogue box you need
to specify the parameters of your experiment. First enter a nice suggestive Experiment
name. Make sure to choose a different name for each of your batch processing experiments
so as not to lose previously saved output files from prior experiments. In the box titled
Vary variables as follows the disease transmission and network parameters for a New
experiment are set to the ones that currently appear in the interface. You can edit them, but
right now we want to work with the ones that have already been specified in the interface.

In the box Repetitions you want to enter the desired number of simulation runs that
you want to analyze. Let us enter 500.

The box Measure runs using these reporters allows you to specify the kind of data
that you want to analyze in this batch processing experiment. Here we are interested in the
number of hosts that are in the removed state and the time at the end of each simulated
outbreak. Enter:

count turtles with [removed?]
ticks

Note that NETLOGO refers to the agents in each simulation (hosts in our case) as
turtles and uses a time unit called tick.

Since we are only interested in the values of these output variables at the end of each
simulated outbreak, we want to uncheck the box Measure runs at every step.

The entries in the box Setup commands tell NetLogo how we want to initialize each
simulation. Here we can simply enter

New—-network

and the auto-set switch that we had previously set to On will take care of the initial
state.

The preset choice go in the box Go commands will work fine for our purposes. Simi-
larly, since we want to explore outbreaks in an ST R-model that are guaranteed to terminate
on their own, the default setting 0 (no time limit) in the Time limit box will work here.

Now close the dialogue box by clicking OK and then click Run. If you inadvertently
introduced a syntax error, NETLOGO will complain and you need to fix it. To do so, Edit
your experiment before clicking Run again. If the syntax is fine, a third dialogue box titled
Run options will appear. Give instructions for how and where to save the output. Use
the option Table that gives cleaner output. Leave the number of Simultaneous runs in
parallel at its default value. Then click OK.

14

Next select the directory where you want to save your output. After you click Save the
simulation starts running. A window should appear that has checkboxes Update view
and Update plots and monitors. If the experiment runs slowly, you can speed it up by
unchecking both and moving the speed slider in this window to the extreme right. When
the window finally disappears, the experiment is completed.

As you can see, setting up and running a batch processing experiment involves a fixed se-
quence of steps during which you need to enter certain specifications. For your convenience,
in the instructions How to use these modules at this web site? we gave you a template for
this sequence of steps; in the text of subsequent modules we will frequently refer to it. We
strongly recommend that you keep all output files of your batch processing experiments in
a dedicated directory in case you want to return to them later.

Now open your output file for the above experiment. It is a large spreadsheet that
gives you information about all parameters of the simulations. Of particular interest are
the last two columns that contain the data that we want to analyze. The column with the
header count turtles with [removed?] gives you the numbers of hosts that experienced
infection during each simulated outbreak. The last column gives you the durations of all
simulated outbreaks, that is, the times when the last removals occurred.

Exercise 8 Based on the data in your output file, find each of the following:

(a) The proportion of outbreaks during which at least some hosts escaped infection.

(b) The proportion of outbreaks during which no secondary infections whatsoever occurred.
(¢) The minimum, maximum, and mean durations of all outbreaks.

(d) The minimum, mazimum, and mean durations of all those outbreaks during which all
hosts experienced infection.

References

[1] P Erdés and A Rényi. On the evolution of random graphs. Selected Papers of Alfréd
Rényi, vol, 2:482-525, 1976.

[2] Winfried Just, Hannah Callender, and M Drew LaMar. Disease transmission dynamics
on networks: Network structure vs. disease dynamics. In Raina Robeva, editor, Algebraic
and Discrete Mathematical Methods for Modern Biology, pages 217-235. Academic Press,
2015.

*http://www.ohio.edu/people/just/IONTW/

15

Sample solutions for the exercises

Sample solution for Exercise 1: With 120 nodes in a complete graph with an edge

between each pair of the nodes, there are 7140 edges in total, too many to be distinguishable.
O

Sample solution for Exercise 2: F(K,) = {{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}}. O
Sample solution for Exercise 3: No, because when N = 1, we get K| = K;. [

Sample solution for Exercise 4: (a) If N > 2d + 1, then k; = 2d. If N < 2d + 1, then
ki =N —1.

(b) |i — j| < dor N —|i — j| <d. Here, i and j are the numbers of the nodes that you see
after clicking Labels. []

Sample solution for Exercise 5: Actually, the nodes in the corners have degree 8, as
is shown in the Network Metrics plot. However, in the graph of the World window,
some edges overlap, so that one cannot distinguish them just by observing the graph. For
example, both {0,1} and {0,2} are edges in this graph that do not show up as distinct
objects in the World window. [

Sample solution for Exercise 6: G; = ({0,1,2,3,4,7,8},{{0,3},{0,7},{1,7},{2,4},
{2,7},{3,8}}). O

Sample solution for Exercise 7: Change

num/frac: 2
min-deg: 4
Then click New. [

Sample solution for Exercise 8: To analyze the data, first compute the overall statistics
for part (c¢) on the duration of outbreaks by analyzing the output column with the header
ticks. Then sort the output column with the header count turtles with [removed?]
from smallest to largest and compute the proportions for (a) and (b). Finally, remove all
rows with simulations where some hosts escaped infection and compute the statistics for (d).
In our experiment, there were 27 simulations in which only 1 host experienced infection, 1
simulation in which 2 hosts experienced infection, 1 simulation in which 5 hosts experienced
infection, 3 simulations in which 9 hosts experienced infection, and 468 simulations in which
all 10 hosts experienced infection. Thus,
(a) The proportion of outbreaks during which at least some hosts escaped infection was
(27+ 1+ 1+ 3)/500 = 0.064.
(b) The proportion of outbreaks during which no secondary infections whatsoever occurred
was 27/500 = 0.054.

16

(¢) The minimum, maximum, and mean durations of all outbreaks were 0.001736, 9.261946

and 2.889893 respectively.
(d) The minimum, maximum, and mean durations of all those outbreaks during which all

hosts experienced infection were 0.892822, 9.261946 and 3.076228 respectively. [

17

