
A brief review of basic probability theory∗

Winfried Just†

December 23, 2015

The spread of infectious diseases is inherently a stochastic process and the materials
posted at this website1 heavily rely on probability theory. Here we review some basic
concepts of probability theory for easy reference. The material is restricted to notions that
are used in teaching materials posted here or in our book chapters [1, 2]. While this posting
cannot replace a regular textbook on probability, it can serve as a short refresher course.

1 Modeling stochastic systems: sample spaces and events

We are interested in studying the probability of random events that may occur in a natural
system. In order to do this in a mathematically rigorous way, one first needs to define a
sample space Ω that comprises all elementary outcomes that could possibly be observed.
The choice of a suitable sample space depends both on the natural system that we want to
study and on the particular questions we are interested in.

Let us consider an example from the study of the spread of infectious diseases. Consider
a very small population of N = 3 hosts (humans, animals or plants) and a disease from
which hosts never recover. Assume also that the disease can be both introduced from outside
the population and transmitted from host to host within the population, and that currently
all three hosts are susceptible to the disease, which means that they are neither immune nor
already infected. Assume furthermore that the disease gets transmitted by direct contact
between an infectious and a susceptible host during which a sufficient number of pathogens
get transferred so that the formerly susceptible host becomes infectious.

If we are only interested in which of the hosts will be infectious exactly one year from
now, then we could define

Ω1 = {SSS, SSI, SIS, SII, ISS, ISI, IIS, III}, (1)

where a letter S in position i indicates that host i will still be susceptible one year from
now and a letter I in position i indicates that host i will be infectious at that time.
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The elements of a sample space are called elementary outcomes (of an “experiment”
run by nature or perhaps a computer simulation). In Ω1 they are represented by letter
sequences. We want to conceptualize the elementary outcomes in such a way that they
will give us all the information that we are interested in. The elementary outcomes in Ω1

certainly tell us who will and who will not be infectious one year from now, but Ω1 would
be inadequate for modeling the time course of an outbreak in the population. For example,
let T I2 denote the time when host 2 becomes infectious and let time be measured in years.
In our interpretation of the sample space Ω1 above, the elementary outcome SII allows us
to deduce that the inequality T I2 ≤ 1 holds, but it does not allow us to pinpoint T I2 with
any greater accuracy. For modeling the time course of an outbreak with arbitrary precision,
a better choice for the sample space would be

Ω2 = [0,∞)3 = {(x, y, z) ∈ R3 : 0 ≤ x, y, z}. (2)

An elementary outcome (x, y, z) ∈ Ω2 indicates that the times of onset of infectiousness
of the three hosts are T I1 = x, T I2 = y, and T I3 = z.

Thus we have some flexibility in choosing the set of elementary outcomes, but there
are some restrictions. We need to make sure that the sample space comprises all possible
observations. This is not always obvious. For example, Ω2 will be a bona fide sample space
only if it is certain that every one of the three hosts will eventually become infectious.
This is rather dubious in the real-world examples, but for our purpose of illustrating basic
concepts we may pretend it were true.

We also need to make sure that no two different elementary outcomes could possibly
occur simultaneously. This will be the case for Ω1 and Ω2 as defined above. But suppose we
had tried instead to conceptualize our sample space as Ω∗ = {S1, I1, S2, I2, S3, I3}, where
Si signifies that host i will still be susceptible one year from now and Ii signifies that host i
will be infectious at that time. But, for example, S1, I2, S3 could all occur simultaneously.
Thus Ω∗ would not be a valid option for a sample space.

However, I1 as defined above is certainly a possible event that could occur during an
outbreak, and the same is true for the other elements of Ω∗. In probability theory events are
conceptualized as subsets of the sample space that comprise all outcomes that are favorable
to the event. For example, in terms of Ω1 the event I1 would be treated as the subset
I1 = {ISS, ISI, IIS, III} ⊂ Ω1, in terms of Ω2 we would have I1 = {(x, y, z) ∈ Ω2 : x ≤ 1}.
Treating events as sets takes some getting used to. It is often more intuitive to think of
events in terms of verbal descriptions and of the corresponding subsets of the sample space
as a kind of elaborate mathematical symbols for them.

Each subset of a finite sample space like Ω1 is considered an event and has a corre-
sponding verbal description, albeit possibly a rather tortuous one (think how you would
verbally describe the event {SIS, SII, ISI, SIS} ⊂ Ω1). This will no longer be true in
infinite sample spaces like Ω2 where some subsets simply defy any kind of description. For
infinite sample spaces only so-called measurable subsets qualify as events, but not necessar-
ily all subsets. We can think of measurable subsets as subsets that have a certain kind of
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mathematical description.2

The treatment of events as subsets of the sample space allows us to translate some verbal
descriptions into operations on sets. The complement Ē of an event E ⊆ Ω is the set Ω\E
of all elementary outcomes that are not favorable to E. It signifies that the event E did
not occur. For example, the complement of I1 in Ω1 is the set

Ī1 = Ω1\{ISS, ISI, IIS, III} = {SSS, SSI, SIS, SII} = S1.

Similarly, the intersection E ∩ F signifies that both events E and F occurred simulta-
neously, while the union E ∪ F signifies that at least one of the events E and F occurred.
For example, in Ω1 we get

I1 ∩ S2 = {ISS, ISI, IIS, III} ∩ {SSS, SSI, ISS, ISI} = {ISS, ISI};
I1 ∩ S1 = {ISS, ISI, IIS, III} ∩ {SSS, SSI, SSI, SII} = ∅;
I1 ∪ S1 = {ISS, ISI, IIS, III} ∪ {SSS, SSI, SSI, SII} = Ω1.

(3)

The empty set ∅ is called the impossible event. The definite article is used since there
is only one empty set, although the impossible event (like any other event, by the way)
usually has many different verbal descriptions. The second line of (3) shows that the
events I1 and S1 cannot occur simultaneously; they are mutually exclusive. This makes
intuitive sense if we consider their verbal descriptions given above.

Note that the events I1 and S1 are complements of each other. It is true for any event E
that E ∩ Ē = ∅ while E ∪ Ē comprises the whole sample space.

2 Probability functions and probability measures

Assume we are given a sample space Ω and a family of subsets of Ω that we consider events.
A probability measure is a function that assigns a probability P (E) to each event E and has
certain properties that we will discuss shortly.

The nature of the sample space imposes some restriction on how we can construct
probability functions. A sample space Ω is discrete if all its elements can be arranged in a
sequence (e1, . . . , ek, . . .) of pairwise distinct entries that are indexed either by all positive
integers k or by all integers 1 ≤ k ≤ K, where K is the total number of elementary outcomes.
The space Ω1 as defined by (1) is an example of a discrete space, while Ω2 as defined by (2)
is not. In a discrete sample space, all subsets are considered events.

Now assume Ω is discrete and (e1, . . . , ek, . . .) is an enumeration of its elementary out-
comes. A probability function is any function f that assigns nonnegative reals to the ele-
mentary outcomes and satisfies

(f1) f(ek) ∈ [0, 1] for all ek ∈ Ω.

2This will be literally true for so-called Borel measurable subsets.
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(f2)
∑

k f(ek) = 1.

Condition (f1) simply asserts that the values of f are bona fide probabilities; the role
of (f2) will become clear shortly. We want to point out that any function f that satisfies (f1)
and (f2) qualifies as a probability function. Even if Ω is finite, the values f(e1) do not have
to be all equal, and some of elementary outcomes may even be assigned probability 0.

Note that a probability function is defined on the set Ω of all elementary outcomes,
while a probability measure is defined on the set of all subsets of Ω that are events. Given
a probability function f , we can define a probability measure by assigning probabilities to
events E as follows:

P (E) =
∑

{k: ek∈E}

f(ek). (4)

The resulting probability measure has the following properties:

(P1) If E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F ).

(P2) P (Ω) = 1.

Property (P2) follows immediately from Property (f2). It asserts that always some
elementary outcome will be observed.

Property (P1) is called additivity. In particular, the complement Ē of an event E and
the event E itself are always mutually exclusive, so that (P1) and (P2) together imply that
P (E ∪ Ē) = P (Ω) = 1, or, equivalently,

P (Ē) = 1− P (E). (5)

The complement Ω̄ of the whole sample space is the empty set ∅. It follows from (5)
that

P (∅) = 1− P (Ω) = 1− 1 = 0, (6)

as befits the impossible event. Since we allowed 0 as the a legitimate value of the proba-
bility function f , it may not be the case though that ∅ is the only event that occurs with
probability zero,

It is important to realize that P (E ∪F ) = P (E) +P (F ) will hold only if P (E ∩F ) = 0.
By (6), this will be true if E and F are mutually exclusive as in (P1), but in the general
case we will need to use the formula

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ). (7)

If the sample space Ω is not discrete (as in our example Ω2 of a continuous sample space),
then we may have a situation where each elementary outcome occurs with probability 0.
In this case we can no longer define probability measures in terms of probability functions.
The construction of probability measures for sample spaces like Ω2 requires more advanced
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mathematical tools than we need here. Let us only mention that the resulting probability
measures are functions that satisfy a stronger version of Property (P1) called countable
additivity in addition to Property (P2). In particular, Equations (5)–(7) remain valid for
continuous sample spaces.

3 Conditional probabilities and independence

The previous section described mathematical constructions of probability measures and
some of their properties, but did not say anything about the actual probabilities of events
other than ∅ and Ω. In practice, it may be quite hard to determine the probabilities of
events that may or may not occur in a natural system. In a sense, much of the work in the
exercises on this web site and in the chapters [1, 2] can be understood as trying to estimate
such probabilities for events in more elaborate versions of our toy sample spaces Ω1,Ω2 of
Section 1 by simulating outbreaks.

For the purpose of estimating probabilities it is often useful to consider them as measures
of the degree of certainty that a given event is going to occur. Let us return to our example
of Section 1 and work with Ω1. Assume that initially no host is infectious, but the infection
may be introduced from outside the population and subsequently also be spread within it.
Then P (I1) would represent our degree of certainty (or strength of belief) that host 1 will
be infectious after one year in the absence of any additional information. Now suppose
that we learn that host 2 is infectious after one year, in other words, that event I2 has
occurred. This would not tell us directly whether host 1 also became infectious. But the
additional information would most likely alter our estimate of P (I1): It tells us that the
infection must have been introduced into the population during the year and could have
subsequently spread from I2 to I1 or the other way round (possibly through host 3 as an
intermediary). None of these scenarios could have occurred if we knew that host 2 was still
susceptible after one year. Thus the additional information would increase the strength of
our belief in event I1, albeit not to absolute certainty, which would translate into P (I1) = 1.
The revised probability estimate for the event P (I1) is called the conditional probability of I1

given that event I2 occurred and denoted by P (I1|I2).
Statisticians are bitterly divided about whether conceptualizing probabilities entirely in

terms of strength of beliefs is legitimate. One camp, the Bayesians, holds that it is, while the
opposing camp of frequentists objects. To keep our neutrality, let us give the definition of
conditional probability in terms of the framework that was developed in Section 1. Assume
E,F are events such that P (F ) > 0. Then the conditional probability of E given that
event F occurred is

P (E|F ) =
P (E ∩ F )

P (F )
. (8)

If we multiply both sides of (8) by P (F ) we obtain the following multiplication law for
conditional probabilities:
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P (E ∩ F ) = P (E|F )P (F ). (9)

The definition given by (8) is less intuitive than the description of conditional proba-
bility in terms of changing beliefs, but it is easy to work with. Assume, for example, that
introduction of the disease from outside the population is relatively rare, but once it gets
introduced, it would quickly spread within our population. A probability function f that
takes the following values might reasonably well fit this description:

f(SSS) = 0.3; f(SSI) = f(SIS) = f(ISS) = 0.05;

f(SII) = f(IIS) = f(IIS) = 0.1; f(III) = 0.25.
(10)

Then from (4) and (8) we get:

P (I1|I2) =
P ({IIS, III})

P ({SIS, SII, IIS, III})
=

0.1 + 0.25

0.05 + 0.1 + 0.1 + 0.25
=

0.35

0.5
= 0.7, (11)

while P (I1) = 0.5. Thus given the information that I2 has occurred we should revise our
estimate of P (I1) up from 0.5 to 0.7.

Now suppose that we are modeling a visit by an infectious host from outside the pop-
ulation who interacts with each of hosts 1, 2, 3 and we are only interested which of these
hosts gets infected by this visitor. We can study this question in terms of the same sample
space Ω1 as before, but the possible subsequent spread of the infection within the popula-
tion becomes irrelevant. It may be reasonable to model the probability function f as if it
resulted from tossing a biased coin three times, so that host i becomes infectious if, and only
if, the coin comes up heads in toss number i. If the coin comes up heads with probability p
on a single toss, then

f(SSS) = (1− p)3; f(SSI) = f(SIS) = f(ISS) = p(1− p)2;

f(SII) = f(IIS) = f(IIS) = p2(1− p); f(III) = p3.
(12)

From (4) and (8) we get:

P (I1) = P ({ISS, ISI, IIS, III}) = p(1− p)2 + 2p2(1− p) + p3 = p,

P (I1|I2) =
P ({IIS, III})

P ({SIS, SII, IIS, III})
=

p2(1− p) + p3

p(1− p)2 + 2p2(1− p) + p3
=
p2

p
= p.

(13)

In this case the given the information that I2 has occurred would not alter our estimate
of P (I1). The events I1 and I2 are independent.

The most natural formal definition would be to call two events E and F independent
if, and only if, P (E|F ) = P (E). However, P (E|F ) is defined only if P (F ) > 0. Here is a
more elegant definition that always makes sense.
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Definition 1 Two events E and F are independent if, and only if,

P (E ∩ F ) = P (E)P (F ). (14)

Equation (9) shows that as long as P (F ) > 0, Definition 1 coincides with the requirement
that P (E|F ) = P (E).

The notion of independence is quite subtle. For more than two events, say E1, E2, E3, E4,
independence of all these events requires that

P (E1 ∩ E2) = P (E1)P (E2), P (E1 ∩ E3) = P (E1)P (E3), . . . , P (E3 ∩ E4) = P (E3)P (E4);

P (E1 ∩ E2 ∩ E3) = P (E1)P (E2)P (E3), . . . , P (E2 ∩ E3 ∩ E4) = P (E2)P (E3)P (E4);

P (E1 ∩ E2 ∩ E3 ∩ E4) = P (E1)P (E2)P (E3)P (E4).

(15)

If only the first line of (15) is satisfied, then we say that the events E1, E2, E3, E4 are
pairwise independent. This property does not automatically imply independence of the
events; examples can be found in any introductory textbook on probability or statistics.

For our purposes it suffices to know that in experiments based on repeatedly tossing a
coin or rolling a die we can always assume independence of events E1, . . . , En as long as
there are no two events Ej , Ek with j 6= k whose verbal descriptions involve the same toss or
roll. Recall the motivating story that we told in the paragraph that precedes Equation (12).
In terms of this story, event I1 is entirely determined by the first toss, while event I2 is
entirely determined by toss number two. Sure enough, our calculations showed that I1

and I2 are independent. By the same principle, events I1, I2 and S3 will be independent.
Trying to verify this by using the analogue of (15) and direct calculations would be quite
tedious.

4 Random variables and probability distributions

When constructing sample spaces we need to choose our set of elementary outcomes so that
it covers all possibilities. But in actual modeling we may not be interested in all aspects
of the outcomes, at least not at the same time. For example, for our toy population of
Section 1 we may just be interested in the total number ξI of hosts that will be infectious
one year from now, or in the time T I1 when host 1 will become infectious. Such numerical
aspects of the outcomes can be expressed in terms of random variables, abbreviated r.v.s.

Technically, a r.v. is a function ξ that is defined on the sample space and takes values
that are real numbers. For continuous sample spaces, there is an additional requirement
that r.v.s must be measurable functions, but this does not concern us here as all functions
that have a reasonably nice mathematical description are measurable.

We will need to make a distinction between discrete and continuous r.v.s. For example,
the r.v. ξI that counts the total number of infectious hosts after one year in our example is
discrete; it can take only values in the set {0, 1, 2, 3}. In contrast, the r.v. T I1 is continuous;
it can take any values in the interval [0,∞).
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The (probability) distribution of a r.v. ξ tells us how likely it is that ξ takes certain
values. The formal definition of this notion depends on whether the r.v. is discrete or
continuous.3

Let us discuss the discrete case first. For our purposes we can restrict our attention to
discrete r.v.s ξ that take only values in the set N = {0, 1, 2, . . . } of nonnegative integers.
In this case the distribution of ξ simply specifies for each k the probability pk = P (ξ = k)
that ξ will take the value k. Let us illustrate this construction with the distribution of the
r.v. ξI : Ω1 → N that counts the number of infectious hosts after one year. In this case we
have

ξI(SSS) = 0; ξI(SSI) = ξI(SIS) = ξI(ISS) = 1;

ξI(SII) = ξI(ISI) = ξI(IIS) = 2; ξI(III) = 3.
(16)

If we assume the probability measure that is generated by the probability function
of (10), then

p0 = P (ξI = 0) = 0.3; p1 = P (ξI = 1) = 0.15;

p2 = P (ξI = 2) = 0.3; p3 = P (ξI = 3) = 0.25.
(17)

For continuous r.v.s like T I1 the definition of the distribution is more complicated, as
for any given potential value x we will have P (T I1 ) = 0. But for any interval [a, b] with
a < b, the probability P (a ≤ T I1 ≤ b) that T I1 falls into this interval will be positive. Thus
the distribution of a continuous r.v. ξ should specify, for each interval [a, b], the probability
that ξ takes values in this interval.

This can be achieved as follows: Each continuous r.v. ξ has a so-called probability density
function g. This function g is defined on the real line, takes nonnegative real values, and
needs to be integrable. Typically g will be continuous except at a few points where it may
have jump discontinuities. Moreover, g needs to satisfy∫ ∞

−∞
g(x) dx = 1. (18)

The relation between ξ and g is such that for each pair of real numbers a < b we have:

P (a ≤ ξ ≤ b) =

∫ b

a
g(x) dx. (19)

Thus g determines the distribution of ξ in the sense that we outlined above. Notice
that (18) assures that with probability 1 the value of ξ is some real number. Since the
probability that ξ takes one of the two endpoints of [a, b] as its value is zero, we could
equally well have written the left-hand side of (19) in the form P (a < ξ < b).

3There are also mixed r.v.s that are neither discrete nor continuous, but we don’t need them here.
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Let us illustrate this construction with a simple example. Consider the function gu that
takes the value 1 for every x in the unit interval and the value 0 for all other x. This is a
legitimate probability density function as

∫∞
−∞ gu(x) dx =

∫ 1
0 1 dx = 1. If ξu is a r.v. with

this probability density function, then for every 0 ≤ a < b ≤ 1 we get

P (a ≤ ξu ≤ b) =

∫ b

a
1 dx = b− a. (20)

Thus for every subinterval [a, b] of [0, 1] the probability that the value of ξu falls into [a, b]
is equal to the length of the interval. There is no particular area inside [0, 1] where values
of ξu tend to occur more frequently than elsewhere. We say that the r.v. ξu is uniformly
distributed over the interval [0, 1]. The most basic random number generators that come
with standard computer software generate values of r.v.s that can be, with very good ap-
proximation, assumed to be sampled from the uniform distribution over [0, 1].

5 Mean and variance of a random variable

There are several notions of averages for a given r.v. ξ: the mean, the median, and the
mode. Here we will discuss the mean. In the literature the mean is denoted by µ,E(ξ)
or 〈ξ〉. We will adopt the notation 〈ξ〉.

If ξ : Ω→ N is a discrete r.v. that takes values in the set N of nonnegative integers and
if pk denotes the probability that ξ takes the value k, then the mean 〈ξ〉 is given by the
formula

〈ξ〉 =
∞∑
k=1

kpk. (21)

Note that even if p0 > 0, it does not matter whether the summation in (21) starts with 0
or 1 as 0p0 = 0. For example, the mean of the r.v. ξI whose distribution is given by (17)
evaluates to

〈ξI〉 = 0(0.3) + 1(0.15) + 2(0.3) + 3(0.25) = 1(0.15) + 2(0.3) + 3(0.25) = 1.5. (22)

If ξ : Ω→ R is a continuous probability distribution with probability density function g,
then the mean 〈ξ〉 is given by the formula

〈ξ〉 =

∫ ∞
−∞

xg(x) dx. (23)

For example, the mean of continuous r.v. ξu with uniform distribution on the inter-
val [0, 1] evaluates to

〈ξu〉 =

∫ ∞
−∞

xgu(x) dx =

∫ 1

0
x dx =

x2

2

]1

0

= 0.5; (24)
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exactly as one would expect.
Functions such as ξ2 or ξ+η that are obtained by applying algebraic operations to one or

more r.v.s are also r.v.s. The mean behaves very nicely with respect to linear combinations.
If ξ1, ξ2, . . . , ξn are r.v.s that are defined on the same sample space Ω and c1, . . . , cn are
constants, then

〈c1ξ1 + c2ξ2 + · · ·+ cnξn〉 = c1〈ξ1〉+ c2〈ξ2〉+ · · ·+ cn〈ξn〉. (25)

For example, consider an experiment of tossing n coins and let ξi = 1 if coin number i
comes up heads and ξi = 0 otherwise. Such r.v.s ξi are called indicator r.v.s. Then the total
number ξ of heads that come up in the n tosses can be expressed as ξ = ξ1 + ξ2 + · · ·+ ξn,
and it follows from (25) that

〈ξ〉 = 〈ξ1〉+ 〈ξ2〉+ · · ·+ 〈ξn〉. (26)

The mean of a r.v. ξ is also often called the first moment of ξ. The second moment of ξ
is defined as the mean 〈x2〉, and the variance V ar(ξ) of ξ is defined as

V ar(ξ) = 〈(ξ − 〈ξ〉)2〉. (27)

Note that the r.v. (ξ − 〈ξ〉)2 takes only nonnegative values. Hence V ar(ξ) will always
be nonnegative, and will be large if ξ takes on values that differ significantly from the mean
with high probability. Thus the variance of ξ is a measure of variability of ξ. It will be
zero only if P (ξ = 〈ξ〉) = 1, that is, if there is no variability whatsoever in the values
of ξ. Another measure of variability of ξ is the standard deviation σ =

√
V ar(ξ). The

notation σ2 is also often used in the literature for the variance of a r.v.
The variance of any r.v. ξ is equal to the difference between the second moment of ξ

and the square of its mean. Since the mean 〈ξ〉 can be treated as a constant, this result can
be derived from (25) as follows:

V ar(ξ) = 〈(ξ − 〈ξ〉)2〉 = 〈ξ2 − 2〈ξ〉ξ + 〈ξ〉2〉 = 〈ξ2〉 − 2〈ξ〉〈ξ〉+ 〈ξ〉2 = 〈ξ2〉 − 〈ξ〉2. (28)

The expression on the right of (28) often allows for easier calculation of the variance
than (27). For a discrete r.v. ξ that takes values in N, Equation (28) translates into

V ar(ξ) = 〈ξ2〉 − 〈ξ〉2 =

( ∞∑
k=1

k2pk

)
−

( ∞∑
k=1

kpk

)2

. (29)

For a continuous r.v. ξ with probability density function g, Equation (28) translates
into

V ar(ξ) = 〈ξ2〉 − 〈ξ〉2 =

∫ ∞
−∞

x2g(x) dx−
(∫ ∞
−∞

xg(x) dx

)2

. (30)
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6 Medians, quartiles, and percentiles

Let ξ be a random variable. In the previous section we defined the mean, variance, and
standard deviation of ξ. The mean is a measure of central tendency while the variance and
standard deviation of ξ are measures of dispersion. Another important measure of central
tendency is the median Q2 of ξ. It is defined in such a way that ξ will take values ≤ Q2

with probability at least 0.5 and values ≥ Q2 also with probability at least 0.5. A more
general notion is the P -th percentile. It is a number Q such that that ξ will take values
≤ Q with probability at least P

100 and values ≥ Q also with probability at least P
100 . The

25-th percentile is commonly denoted by Q1, the 50-th percentile is the median Q2, and the
75-th percentile is commonly denoted by Q3. The numbers Q1, Q2, Q3 are called quartiles
as they typically divide a large data set of values of the r.v. ξ into four parts of roughly
equal sizes. The difference IQR = Q3 −Q1 is called the interquartile range and is another
measure of dispersion.

For r.v.s ξ with uniform distributions, the mean 〈k〉 is the same as the median Q2. The
same will be true if ξ has a binomial or a normal distribution that we will define in the next
two sections. For r.v.s with other distributions the median can be larger or smaller than
the mean. If ξ has an exponential distribution as defined in Subsection 8.1 below, then the
mean will be larger than the median, as exponentially distributed r.v.s occasionally take
unusually large values, while the minimum is bounded from below by 0. The mean may
be strongly influenced by such outliers, while the median does not discriminate between
“larger than average” and “much, much larger than average” values.

It is interesting to see what happens if we stretch the definition of r.v.s a bit so as to
allow infinite values. Suppose ξ is such a generalized r.v. that takes no negative values and
takes the value∞ with positive probability. Then the mean of ξ must be infinite. However,
if P (ξ =∞) < 0.5, the median will still be finite. If 0.5 < P (ξ =∞) < 1, then the median
will also be infinite, but there will be some positive number P such that the P -th percentiles
is finite.

7 Selected discrete probability distributions

7.1 Bernoulli distributions

Think about tossing a biased coin that comes up heads with probability p and tails with
probability 1 − p. Let ξ be the r.v. that counts the number of “successes,” that is, the
number of times heads comes up in this one toss. This r.v. has a Bernoulli distribution
with parameter p.

Note that p1 = p and p0 = 1 − p, while pk = 0 for k > 1. By substituting these
probabilities into (21) and (29) we find that

〈ξ〉 = p; V ar(ξ) = p− p2 = p(1− p). (31)
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7.2 Binomial distributions

Think about tossing a biased coin n times. Assume that the coin comes up heads with
probability p and tails with probability 1 − p. Let ξ be the r.v. that counts the number
of “successes,” that is, times heads comes up in these tosses. This r.v. has a binomial
distribution with parameters n and p. We get:

pk =

(
n

k

)
pk(1− p)n−k;

〈ξ〉 = np; V ar(ξ) = np(1− p).
(32)

If 0 < p < 1, then pk > 0 for all k ∈ {0, 1, . . . , n}. For k > n the binomial coefficient
(
n
k

)
evaluates to 0, which makes sense, since the number of successes cannot exceed the number
of coin tosses. The second line of (32) can be derived from the first. Alternatively, the
formula 〈ξ〉 = np can be derived from (31) and (26).

7.3 Poisson distributions

For large n the probabilities pk defined in the first line of (32) can be difficult to calculate
directly. Often it is better to work with an approximation to the binomial distribution
that gives similar probabilities. If n is large and np is of moderate size (np < 10 is often
quoted as a rule of thumb), the Poisson distribution usually works very well. This has one
parameter λ which should be set equal to np in approximations of the binomial distribution
with parameters n and p. The next formula summarizes its properties.

pk =
λke−λ

k!
〈ξ〉 = V ar(ξ) = λ.

(33)

Notice that in a Poisson distribution we have pk > 0 for all k. If we want to assume that
a r.v. ξ has exactly a Poisson distribution, we need to allow that it can take on arbitrary
nonnegative integers as its values. This of course does not, strictly speaking, make sense
in the standard interpretation of binomial r.v.s. But for large k the probability pk will be
very close to 0 for moderate values of λ, which will give a rather good approximation to the
binomial distribution where pk = 0 for k > n.

8 Selected continuous probability distributions

8.1 Exponential distributions

Exponentially distributed r.v.s take only values that are positive reals. Their probability
density functions have the form

12



g(x) =

{
λe−λx for x ≥ 0,

0 for x < 0,
(34)

where λ > 0 is the parameter of the distribution.
If ξ has an exponential distribution with parameter λ, then for all T ≥ 0:

P (ξ ≤ T ) = 1− e−λT , or, equivalently, P (ξ > T ) = e−λT ;

〈ξ〉 =
1

λ
; V ar(ξ) =

1

λ2
.

(35)

Continuous r.v.s that represent waiting times often have exponential distributions. More
precisely, such r.v.s are exponentially distributed if, and only if, the random variable is
memoryless, that is, if the time one still needs to wait is independent of how long one has
already been waiting. The first line of (35) shows that exponentially distributed r.v.s are
indeed memoryless: The conditional probability that one will need to wait at least another t
units of time given that one has already waited T time units can be calculated as

P (ξ ≥ T + t|ξ > T ) =
e−λ(T+t)

e−λT
= e−λt. (36)

The rightmost expression of (36) does not depend on T , which means that the future
(how long one still needs to wait) is independent of the past (the fact that one has already
been waiting T time units). This is exactly what the expression “ξ is memoryless” means.

The second line of (35) shows that larger values of the parameter λ in exponential
distributions translate into shorter expected waiting times.

The first line gives us another interesting perspective on this: By L’Hospital’s Rule,
lim∆t→0+

1−e−λ∆t

∆t = λ. It follows that as long as ∆t is sufficiently small and ξ is exponen-
tially distributed with parameter λ, we have

P (t ≤ ξ ≤ t+ ∆t) = P (ξ ≤ ∆t) ≈ λ∆t, (37)

8.2 Normal distributions and the Central Limit Theorem

The probability density function of a r.v. ξ with normal or Gaussian distribution with
parameters µ and σ is given by

g(x) =
1

σ
√

2π
e−

(x−µ)2

2 . (38)

The graph of g has a characteristic bell shape. The parameter µ represents the mean
value and the parameter σ the standard deviation. In our notation this translates into 〈ξ〉 =
µ and V ar(ξ) = σ2.

Normal distributions often give good approximations to binomial distributions with
parameters n and p in situations where np is too large for the Poisson approximation. Here
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is how this works: Let ξ be a r.v. that has a binomial distribution with parameters n and p.
Suppose we want to estimate the probability P (k1 ≤ ξ < k2). If n is sufficiently large, then
we can use the fact that this probability will be very close to the probability that a Gaussian
r.v. η with the same mean and standard variation as ξ takes values in the corresponding
interval.

To perform these calculations, we first need to find the parameters µ and σ of η. By (32),
we must set µ = np and σ =

√
np(1− p).

Next we must find the “corresponding” interval for η. The natural impulse would be to
estimate P (k1 ≤ η < k2), but this may not work too well. While ξ can take only integer
values, all real values are allowed for η. Thus P (k1 ≤ ξ < k2) − P (k1 < ξ < k2) = P (ξ =
k1) > 0, while P (k1 ≤ η < k2) = P (k1 < η < k2). This undesirable effect can be largely
avoided by making the so-called continuity correction. It is based on identifying the event
that the discrete r.v. ξ takes the integer value k with the event that the continuous r.v. η
takes a value in the interval (k−0.5, k+0.5] that is centered around k and has length 1. We
can then estimating P (k1 ≤ ξ < k2) by the probability P (k1−0.5 < ξ < k2−0.5) that η takes
values in the union of those unit-length intervals that are centered at k1, k1 + 1, . . . , k2 − 1.

Now we need to deal with a third problem: The integral of g that expresses P (k1−0.5 <
ξ < k2 − 0.5) cannot be evaluated in closed form. We need to convert the endpoints of the
interval for η into so-called z-scores z1 = k1−0.5−µ

σ and z2 = k2−0.5−µ
σ so that P (k1 − 0.5 <

ξ < k2 − 0.5) = P (z1 < ζ < z2) for a standard normal r.v. ζ, that is, for a random
variable ζ that is normally distributed with parameters µ = 0 and σ = 1. The probability
P (z1 < ζ < z2) can then be looked up in a table or found with standard statistical software.

Normal distributions are ubiquitous in mathematical statistics. The main reason is that
almost all r.v.s ξ that can be expressed in the form

ξ =
η1 + η2 + · · ·+ ηn

n
, (39)

where the ηm’s are independent r.v.s with the same distribution (abbreviated iid for inde-
pendent and identically distributed) have distributions that are very close to normal ones
as long as n is large enough.

This is what the Central Limit Theorem (CLT) asserts. It almost doesn’t matter what
kind of distribution the r.v.s ηm themselves have, all we need is that it is the same for all m
with some fixed and finite mean 〈ηm〉 = µ and some fixed and finite variance V ar(ηm) = σ2

η.

Then 〈ξ〉 = µ and V ar(ξ) =
σ2
η

n , so that ξ will have an approximately normal distribution
with parameters µ and σ =

ση√
n

.

For example, the outcomes of repeated simulations of disease outbreaks can often be
expressed in terms of numbers, such as the final size or total duration of the outbreak.
These numbers will generally differ from simulation to simulation, so that the outcome of
simulation number m becomes a r.v. ηm. We can assume that these r.v.s are independent,
and as long as we keep the parameters of the simulation fixed, all of these r.v.s will have the
same distribution. We don’t know the actual distribution of the r.v.s ηm though; in fact,
the purpose of running simulations is usually to find out something about this distribution.
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In most cases, we want to estimate the mean 〈ηm〉. This should be the same number µ for
all m.

The CLT tells us that if we run a very large number n of simulations, then the mean
ξ = η1+...ηn

n of the observed outcomes will be close to the true mean µ. But how large does
the number n of simulations need to be so that we can, say, be 95% sure that the observed
mean ξ differs by less than ε from the true mean µ, where ε is our tolerance for error?

Here a nice property of normally distributed r.v.s ξ helps: With probability very close
to 0.95, the value of ξ will differ from the mean by less than two standard deviations. In
mathematical terms:

P (µ− 2σ < ξ < µ+ 2σ) ≈ 0.95. (40)

It follows that all we need to do is choose n large enough so that for ξ defined as in (39)
we get

σ ≤ ε

2
. (41)

By the CLT, the equality

σ =
ση√
n
. (42)

will hold with very good approximation. By substituting the right hand side of (42)
into (41) and solving for n we conclude that we need to choose n large enough so that

n ≥
4σ2

η

ε2
. (43)

Looks simple and straightforward, doesn’t it? Unfortunately, there is a snag: We usually
don’t know the value of σ2

η, so we cannot plug it into (43)!
The way out of this conundrum is to first run a few preliminary simulations, use the

outputs to calculate a rough estimate of the standard deviation ση, plug this rough estimate
into (43) and use it to derive an estimate of the minimum number n of simulations that we
need to perform so as to be 95% confident that the observed mean will differ from the true
mean of η by less than our error tolerance ε. This procedure usually works reasonably well.
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