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This module is based on Lectures 36, 38, Conversations 35, 36, and Modules 67B, 68.

The module also uses MatLab. Start a MatLab session now.

For easier reference, let us again briefly review some basic facts about Markov chains.

A Markov chain is a stochastic process where time proceeds in discrete steps t = 0, 1, 2, . . . .
At each time t the process can be in exactly one of several states that are numbered 1, . . . , n.
The probability of being in a given state at time t+ 1 depends only on the state at time t.
A matrix P = [pij ]n×n gives the transition probabilities pij from state i at time t to state j at
time t+ 1.
When ~x(t) = [x1(t), . . . , xn(t)] is the probability distribution for the states at time t, then the
probability distribution ~x(t+ 1) at time t+ 1 is given by

(1) ~x(t+ 1) = ~x(t)P = [x1(t), . . . , xn(t)]P.

The matrix P is a stochastic matrix, which means that each of its rows adds up to 1. There
always exists a left eigenvector ~x with eigenvalue λ = 1 of P that is a probability distribution.
Such a vector is called a stationary distribution of the Markov chain. It has the property that
if ~x(t) = ~x at some time t, then ~x(t+ 1) = ~x(t).

In our example weather.com light we assumed that state 1 means “sunny day” and state 2 means

“rainy day.” The matrix of transition probabilities then takes the form P =

[
p11 p12
p21 p22

]
where:

• p11 is the probability that a sunny day is followed by another sunny day.
• p12 is the probability that a sunny day is followed by a rainy day.
• p21 is the probability that a rainy day is followed by a sunny day.
• p22 is the probability that a rainy day is followed by another rainy day.

Probability distributions at time t are then row vectors ~x(t) = [x1(t), x2(t)], where

• x1(t) is the probability that day t will be a sunny day.
• x2(t) is the probability that day t will be a rainy day.

Now consider weather.com light with P =

[
0.4 0.6
0.3 0.7

]
We found in Conversation 36 that the probability distribution ~x = [1/3, 2/3] is a left eigenvector
with eigenvalue 1 of P. We can verify this with MatLab:

>> P = [0.4, 0.6; 0.3, 0.7]

>> [1/3, 2/3]*P

The output will be the same vector ~x, shown with an accuracy of four decimal places.

For the remainder of this module, it will be useful to see more decimal places of MatLab.
So let’s switch to a different format and then look at the output of the last command again:

>> format long

>> ans
1



As we learned in Module 68, we can find the transposes of a full set of left eigenvectors of P by
entering:

>> [vec, val] = eig(P’)

This will show us an eigenvector of PT with eigenvalue 1 that is scaled version of the transpose of
the vector ~x = [1/3, 2/3], that is, of the stationary probability distribution that we just explored.
Moreover, it will show us that PT also an eigenvector with eigenvalue λ2 = 0.1. The transpose
of such an eigenvector will be a left eigenvector of P. After rescaling it we find thu ~y = [−1, 1]
will be a left eigenvector of P with eigenvalue 0.1. But since its coordinates are of opposite
signs, we cannot rescale ~y to a probability distribution. It plays a quite interesting role in the
behavior of a Markov chain, but exploring this role goes beyond the scope of this course.
One can deduce from the above information about the left eigenvectors of P that ~x = [1/3, 2/3] is
the only stationary probability distribution of the corresponding Markov Chain. Let us explore
numerically in MatLab what happens if we start with a vector ~x(0) 6= [1/3, 2/3]. Let’s start
with a rainy day ~x(0) 6= [0, 1]:

>> [0,1]*P

>> ans*P

>> ans*P

Repeat a few more times to watch what happens, and then do the same for a sunny day as your
starting point:

>> [1,0]*P

>> ans*P

>> ans*P

And so on. What you will see is sequences of the probability distributions for consecutive days,

[x1(0), x2(0)], [x1(1), x2(1)], [x1(2), x2(2)], . . . , [x1(t), x2(t)], . . .

These vectors get closer and closer to the stationary distribution ~x = [1/3, 2/3] and eventually
you will no longer see any change in their values at the accuracy that is shown in the output.

Question 71.1: How many time steps does it take until you see a result that does no longer
change on the screen? Be sure to use >> format long for this question.

These observations illustrate the following general theorem:

Theorem 1. Let P be the transition probability matrix of a Markov chain with n states and
let ~x = [x1, x2, . . . xn] be a stationary distribution for this Markov chain. Assume that the
eigenvalue λ∗ = 1 of P has multiplicity 1 and all other eigenvalues λ of P have absolute value
|λ| < 1. Then if ~x(0) is any initial distribution, the distributions ~x(t) always approach ~x as
t→∞.

The assumption that the eigenvalue λ∗ = 1 of P has multiplicity 1 and all other eigenvalues λ
of P have absolute value |λ| < 1 of Theorem 1 may look a little puzzling. Let us see why it is
needed. Let us explore a Markov chain for weather.com light with transition probability matrix

P =

[
0 1
1 0

]
Question 71.2: Use MatLab to find:

(a) All eigenvalues of P.
(b) All stationary distributions of the Markov chain that is defined by P.



In answering Question 71.2 you will find that the assumptions of Theorem 1 are not satisfied
for this Markov chain. Now explore what happens here when we start with a sunny day:

>> P = [0, 1; 1, 0]

>> [1,0]*P

>> ans*P

>> ans*P

And so on. What do you observe?

Question 71.3: Is it still true that the predictions ~x(t) for subsequent days approach a sta-
tionary distribution ~x?

Question 71.4: Based on your explorations, how would you estimate the proportions of rainy
days and sunny days in a long sequence of days? How are these estimates related to (the)
stationary distribution(s) of the corresponding Markov chain?


