
The steady state system problem is NP-hard even for

monotone quadratic Boolean dynamical systems

Winfried Just∗

June 3, 2006

Abstract

In [2], the authors give a polynomial-time algorithm for deciding for a Boolean
dynamical system in which each regulatory function is a monomial whether every limit
cycle is a steady state. We show that the corresponding problem is NP-hard if the class
of permissible regulatory functions contains the quadratic monotone functions xi ∨ xj

and xi∧xj. We also show that the problem is NP-hard if the set of permissible regulatory
functions includes all functions of the type xixj and xj + 1.

1 Introduction

A Boolean dynamical system is a pair < Fn
2 , f >. The function f : Fn

2 → Fn
2 can be written

as a vector of components f = [f1, . . . , fn].
Boolean dynamical systems have recently found important applications as models of

biochemical networks such as gene regulatory networks [8]. In these applications, xi rep-
resents the concentration level of the i-th chemical in the network that is treated either
as low (Boolean value 0) or high (Boolean value 1). The function f models the change of
concentration levels over successive discrete time steps, and the i-th component fi of f is
the regulatory function for xi.

Given a Boolean dynamical system, one would like to be able to deduce the dynamical
properties of the system from the regulatory functions; ideally by means an efficient algo-
rithm. Starting from any initial state vector x̄ ∈ Fn

2 , the system must eventually enter a
limit cycle. Limit cycles of length one are called steady states. Boolean dynamical systems
with the property that all limit cycles are steady states are called steady state systems, and
we will refer to the problem of determining whether a given Boolean dynamical system is a
steady state system as the steady state system problem.

It follows from the results of [5] which are based on earlier results of [3] that the steady
state system problem has an efficient solution for linear Boolean dynamical systems. An

∗Mathematical Biosciences Institute, 250 Mathematics Building, 231 W 18th Ave, Columbus, OH 43210
and Department of Mathematics, Ohio University, Athens, OH 45701

1



efficient algorithm for this has been developed in [6]. The structure of limit cycles has also
been determined for affine Boolean systems in [9]. A Boolean dynamical system in which
all regulatory functions are monomials, that is, are of the form fi = xj1xj2 . . .xjk

for some
indices j1, j2, . . . , jk, will be called a monomial system. It was shown in [2] that there exists
a polynomial-time algorithm for deciding whether a given monomial system is a steady state
system. The question naturally arises whether this result can be generalized to Boolean
dynamical systems with regulatory functions restricted to other classes of functions, such
as functions of the form m(x̄) + c, where m(x̄) is a monomial and c ∈ {0, 1}, or to the class
of monotone Boolean functions, that is, combinations of the functions x ∨ y and x ∧ y.

In this note we show that the steady state system problem becomes NP-hard when the
class of regulatory functions is allowed to contain either all quadratic monotone functions
xi ∨ xj , xi ∧ xj or all functions of the kind xixj and xj + 1. This shows that in at least one
respect the results of [2] are nearly the best possible ones: While meaningful classification
theorems for Boolean dynamical systems with more general than monomial regulatory func-
tions may exist, one should not expect to be able to extract a polynomial-time algorithm
for the steady state system problem from them.

When interpreting NP-hardness results, one must pay careful attention to the description
length of an instance of the problem. Since Boolean functions in n variables can either be
described by truth tables for 2n input vectors or as a sum of at most 2n monomials, in general
the description length of a Boolean dynamical system in n variables is of the order 2n; not a
polynomial in n. However, all systems considered in this note will have regulatory functions
that are either monomials plus a binary constant, are of the form xi ∨ xj , xi ∧ xj for some
variables, or are combinations of at most m functions of the latter type. In the first two
cases, the description length of the system will be bounded a polynomial in n; in the third
case it will be bounded by a polynomial in n and m. When we claim that a decision problem
for a class of Boolean dynamical systems is NP-hard, then we mean that unless P = NP , no
deterministic algorithm for solving this problem can have an execution time that is bounded
by a polynomial in k for instances of the problem of description length k.

It is know that, in general, determining whether a given Boolean dynamical system has
any steady state is an NP-complete problem [1]. This is a different problem from the steady
state system problem which asks whether all limit cycles are steady states. Note that the
dual of the steady state system problem asks for the existence of a limit cycle of any length
greater than one, and since the class P is closed under dual problems, all we need to show is
that the dual problem is NP-hard. Note that neither the steady state problem nor its dual
is obviously in the class NP, since limit cycles in general may be of exponential length in
the number of variables. However, our proofs will show that for Boolean dynamical systems
with regulatory functions restricted to the classes mentioned above, even the problem of
deciding whether there exists a limit cycle of length two is NP-hard. Since verifying that
two points form a limit cycle can easily be done in polynomial time, our results show that
the problem of existence of limit cycles of length two becomes NP-complete, not merely
NP-hard.

Throughout this paper we will use the notation [n] for the set {1, . . . , n}.

2



2 Generalized monomial systems

We will say that h : Fn
2 → F2 depends on xj if there are values x∗1, . . . , x

∗
j−1, x

∗
j+1, . . .x

∗
n

such that h(x∗1, . . . , x
∗
j−1, 0, x

∗
j+1, . . .x

∗
n) 6= h(x∗1, . . . , x

∗
j−1, 1, x

∗
j+1, . . .x

∗
n). The support of h,

denoted by supp(h), is the set of indices of variables that h depends on. We say that h is a
generalized monomial function if there exist v, ui ∈ F2 for i ∈ supp(h) such that

h(x1, . . . , xn) =
∏

i∈supp(h)

(xi − ui) + v.

A particular case of generalized monomial functions are functions h of the form h(x̄) =
m(x̄)+c, where m(x̄) is a monomial function and c is a Boolean constant. If each regulatory
function is either of the form xixj for some (possibly equal) i, j ∈ [n] or of the form xj + 1,
we call the system a semiquadratic monomial + c system.

We say that < Fn
2 , f > with f = [f1, . . . , fn] is a consistently generalized monomial

system if there are vi ∈ F2 for i ∈ [n] such that for for all i ∈ [n] we have:

fi(x1, . . . , xn) =
∏

j∈supp(fi)

(xj − vj) + vi.

Proposition 1 Suppose < Fn
2 , f > is a consistently generalized monomial system. Then

< Fn
2 , f > is isomorphic to a Boolean monomial system and the results of [2] apply.

Proof: Let f be as in the assumption, and let vi for i ∈ {1, . . . , n} witness the fact that
f is a consistently generalized monomial system. Define Φ : Fn

2 → Fn
2 by Φ(x1, . . . , xn) =

[x1−v1, . . . , xn−vn]. Clearly Φ is a bijection. Let g = [g1, . . . , gn], where gi =
∏

j∈supp(fi)
xj .

It is not hard to see that f = Φ−1 ◦ g ◦ Φ. Since each component of g is a monomial, the
theorem follows. �

Note that the notion of consistently generalized monomial system is stronger than the
notion of a Boolean dynamical system in which every regulatory function is a generalized
monomial function. We will show below (Theorem 2) that if we only assume that each
regulatory function individually is a generalized monomial function, then the steady state
system problem becomes NP-hard, even for semiquadratic monomial + c systems.

One can show that a Boolean function h is a generalized monomial function iff it is
canalizing in every variable in its support, where a Boolean function h : Fn

2 → F2 is canal-
izing in xi if there exist u, v ∈ F2 such that f(x1, . . . , xn) = v whenever xi = u. It has been
reported that most experimentally characterized gene regulatory functions are canalizing
in several variables [4]. Thus Boolean dynamical systems in which every regulatory func-
tion is a generalized monomial function may be highly relevant in modeling of biochemical
networks.

Theorem 2 (i) The steady state system problem is NP-hard for the class of semiquadratic
monomial + c Boolean systems.
(ii) The problem of deciding whether a given semiquadratic monomial + c Boolean system
has a limit cycle of length two is NP-complete.

3



Proof: Suppose {x1, . . .xn} is a set of Boolean variables, suppose ψ = ψ1∧ · · ·∧ψm, where
ψk = yk,1 ∨ yk,2 ∨ yk,3 for all k ∈ [m] and each yk,j is either xik,j

or the negation ¬xik,j

for some variable xik,j
. We will construct a semiquadratic monomial + c Boolean system

< F2n+4m+2
2 , f > that has a limit cycle of length two iff it has a limit cycle of length > 1 iff ψ

is satisfiable. Since the description length of this system is polynomial in n and m and since
our construction can be carried out by a polynomial-time algorithm, this will show that 3-
SAT is polynomial-time reducible to the steady state problem for semiquadratic monomial
+ c Boolean systems, and part (i) of the theorem will follow. Since it can easily be verified
in polynomial time whether a given state is part of a cycle of length two, it will follow that
the problem of deciding whether there exists such a cycle is NP-complete.

In the following description of the system < F2n+4m+2
2 , f >, the letter i stands for a

number in [n] and the letter k stands for a number in [m].

• fi = xi.

• fn+i = xi + 1.

• If yk,1 = ¬xik,1
and yk,2 = ¬xik,2

, then f2n+k = xik,1
xik,2

.

• If yk,1 = xik,1
and yk,2 = ¬xik,2

, then f2n+k = xn+ik,1
xik,2

.

• If yk,1 = ¬xik,1
and yk,2 = xik,2

, then f2n+k = xik,1
xn+ik,2

.

• If yk,1 = xik,1
and yk,2 = xik,2

, then f2n+k = xn+ik,1
xn+ik,2

.

• If yk,3 = ¬xik,3
, then f2n+m+k = x2n+kxik,3

.

• If yk,3 = xik,3
, then f2n+m+k = x2n+kxn+ik,3

.

• f2n+2m+k = x2n+m+k + 1.

• f2n+3m+1 = x2n+2m+1.

• f2n+3m+k+1 = x2n+3m+kx2n+2m+k+1 for k ∈ [m− 1].

• f2n+4m+1 = x2n+4m+2 + 1.

• f2n+4m+2 = x2n+4mx2n+4m+1.

Clearly, the above system is a semiquadratic monomial + c system.
Starting from an arbitrary Boolean vector [x1, . . .x2n+4m+2], after running the system

for m+ 4 steps or longer, the system will be in state [z1, . . . , z2n+4m+2], where the values of
the first 2n+ 4m variables will have settled as follows:

• zi = xi for i ∈ [n].

• zn+i = ¬xi for i ∈ [n].

4



• z2n+k = ¬(yk,1 ∨ yk,2) for k ∈ [m].

• z2n+m+k = ¬(yk,1 ∨ yk,2 ∨ yk,3) for k ∈ [m].

• z2n+2m+k = ψk(x1, . . . , xn) for k ∈ [m].

• z2n+3m+k = ψ1(x1, . . . , xn)∧ · · · ∧ ψk(x1, . . . , xn) for k ∈ [m].

• In particular, z2n+4m = ψ(x1, . . . , xn).

If z2n+4m settles to value 0, then z2n+4m+2 will also settle to 0 and z2n+3m+1 will settle
to 1, so we reach a steady state. If z2n+4m settles to value 1, then z2n+4m+2 and z2n+4m+1

will alternate between 0 and 1, and we reach a limit cycle of length two. The latter can
(and will sometimes) happen iff ψ is satisfiable. �

3 Monotone Boolean dynamical systems

A monotone Boolean dynamical system is one in which every regulatory function is a
combination of functions of the form xi ∧ xj and xi ∨ xj . Monotone Boolean functions have
been widely studied and have found applications in a variety of fields (see [7] and references
therein). Important examples of monotone Boolean functions are threshold functions, for
example, the function that evaluates to 1 iff at least two of the variables x1, x2, x3 are equal
to 1 can be written as (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x1 ∧ x3). We will call a monotone Boolean
dynamical system quadratic if every regulatory function is of the form xi ∨ xj or xi ∧ xj .
Note that this includes the case where fi(x̄) = xj for some i, j, since xj = xj ∨ xj .

Our proof of Theorem 2 heavily relies on the fact that negation of a Boolean variable
can be expressed by a monomial plus a constant. Thus one might expect that the steady
state system problem becomes computationally tractable for the class of monotone Boolean
dynamical systems. Unfortunately, the problem remains NP-hard for this class of functions
(Theorem 4).

Any nonconstant monotone Boolean function takes the value 0 on the input vector that
consists only of 0’s, and takes the value 1 on the input vector that consists only of 1’s. Thus
every monotone Boolean function dynamical system with nonconstant regulatory functions
has at least two steady states, namely the vectors [0, . . . , 0] and [1, . . . , 1]. Therefore the
result of [1] does not directly apply to such systems. However, we can prove the following:

Theorem 3 The problem of deciding whether a monotone Boolean dynamical system has
at least three steady states is NP-complete.

Proof: Suppose {x1, . . .xn} is a set of Boolean variables, suppose ψ = ψ1∧ · · ·∧ψm, where
ψk = yk,1 ∨ yk,2 ∨ yk,3 for all k ∈ [m] and each yk,j is either xik,j

or the negation ¬xik,j
for

some variable xik,j
. We will construct a monotone Boolean system whose description length

is polynomial in n and m that has a third steady state iff ψ is satisfiable.
We construct < F2n+3

2 , f > as follows:

5



• fi = (xi ∧ x2n+1 ∧ x2n+3)∨ x2n+2 for i ∈ [2n].

• f2n+1 = (x1 ∨ xn+1) ∧ · · · ∧ (xn ∨ xn+n).

• f2n+2 = (x1 ∧ xn+1) ∨ · · · ∨ (xn ∧ xn+n).

• f2n+3 = ψ∗(x1, . . . , xn, xn+1, . . . , x2n), where ψ∗ is obtained from ψ by replacing every
occurrence of ¬xi by xn+i.

Clearly, each regulatory function of the above system is monotone and has polynomial
description complexity in n and m.

We make the following observations about this system:

• We will call any state with x2n+2 = 1 or xi = xn+i = 1 for some i ∈ [n] a one-state.
If the system starts from a one-state, then the system will reach the steady state
[1, ..., 1].

• The system will never reach a one-state from any state that is not a one-state. Thus
the basin of attraction of [1, . . . , 1] is the set of all one-states.

• We will call any state that is not a one-state and where x2n+1 = 0 or x2n+3 = 0 or
xi = xn+i = 0 for some i ∈ [n] a zero-state. If the system starts from a zero-state,
then the system will reach the steady state [0, ..., 0].

• We will call any state that is neither a zero-state nor a one-state a proper state. Note
that a state is proper iff x2n+1 = 1, x2n+2 = 0, x2n+3 = 1 and xn+i = ¬xn for all
i ∈ [n].

• The system will reach a zero-state only from another zero-state or from a proper state
such that ψ(x1, . . . , xn) = 0.

• Any proper state such that ψ(x1, . . . , xn) = 1 is a steady state.

It follows that the system above is a steady state system and that is has more than two
steady states iff ψ is satisfiable. This proves Theorem 3. �

Theorem 4 (i) The steady state system problem is NP-hard for the class of quadratic
monotone Boolean systems.
(ii) The problem of deciding whether a given monotone quadratic Boolean system has a limit
cycle of length two is NP-complete.

Proof: Many ideas of this proof are already contained in the proofs of Theorems 2 and 3.
Suppose {x1, . . .xn} is a set of Boolean variables, suppose ψ = ψ1 ∧ · · · ∧ ψm, where ψk =
yk,1 ∨ yk,2 ∨ yk,3 for all k ∈ [m] and each yk,j is either xik,j

or the negation ¬xik,j
for some

variable xik,j
. We will construct a monotone quadratic Boolean system whose description

6



length is polynomial in n and m that has a limit cycle of length two iff the system is not a
steady state system iff ψ is satisfiable.

For better transparency of our argument, we will not aim at constructing a dynamical
system with the smallest possible number of variables, and we will use a variety of letters
for our variables, depending on their role in the system. To avoid ambiguity, we will use the
notation fxi instead of fi for the regulatory function of a variable xi. Let L be the smallest
even integer such that L ≥ max{n + 5, m+ 5}. The variable set of our dynamical system
will be a disjoint union X ∪ C ∪ V ∪ U ∪W ∪ T ∪D ∪ E, where:

• X = {xi,` : i ∈ [n], ` ∈ [L]}. This set contains L input vectors for ψ.

• C = {ci,` : i ∈ [n], ` ∈ [L]}. If the system is in a proper state, this set will contain the
negations of the variables in X .

• V = {vi,j : i ∈ [n], j ∈ [i]}. This set will be used to compute and retain the values of
xi,1 ∨ ci,1.

• U = {u` : ` ∈ [L − 4]}. This set will be used to compute and retain the value of
(x1,1 ∨ c1,1) ∧ · · · ∧ (xn,1 ∨ cn,1).

• W = {wi,j : i ∈ [n], j ∈ [i]}. This set will be used to compute and retain the values
of xi,L−2 ∧ ci,L−2.

• T = {ti : i ∈ [n + 1]}. This set will be used to compute and retain the value of
(x1,L−2 ∧ c1,L−2)∨ · · · ∨ (xn,L−2 ∧ cn,L−2).

• D = {dk,` : k ∈ [m], ` ∈ [k + 1]}. This set will be used to compute and retain the
values of ψk.

• E = {e` : ` ∈ [L− 4]}. This set will be used to compute and retain the values of ψ.

We construct a Boolean dynamical system in these variables as follows:

• fxi,1 = xi,L ∨ tn+1 for i ∈ [n].

• fci,1 = ci,L ∨ tn+1 for i ∈ [n].

• fxi,`+1
= xi,` for i ∈ [n] and ` ∈ [L− 3].

• fci,`+1
= ci,` for i ∈ [n] and ` ∈ [L− 3].

• fxi,L−1
= xi,L−2 ∧ uL−4 for i ∈ [n].

• fci,L−1
= ci,L−2 ∧ uL−4 for i ∈ [n].

• fxi,L
= xi,L−1 ∧ eL−4 for i ∈ [n].

• fci,L
= ci,L−1 ∧ eL−4 for i ∈ [n].

7



• fvi,1 = xi,1 ∨ ci,1 for i ∈ [n].

• fvi,j+1 = vi,` for i ∈ [n] and j ∈ [i− 1].

• fu1 = v1,1.

• fui+1 = ui ∧ vi+1,i+1 for i ∈ [n− 1].

• fun+r = un+r−1 for r ∈ [L− 4 − n].

• fwi,1 = xi,L−2 ∧ ci,L−2 for i ∈ [n].

• fwi,j+1 = wi,j for i ∈ [n] and j ∈ [i− 1].

• ft1 = w1,1.

• fti+1 = ti ∨ wi+1,i+1 for i ∈ [n− 1].

• ftn+1 = tn ∨ tn+1.

• fdk,1
= xik,1 ,1 ∨ xik,2 ,1 if k ∈ [m] and yk,1 = xik,1

and yk,2 = xik,2
.

• fdk,1
= xik,1 ,1 ∨ cik,2 ,1 if k ∈ [m] and yk,1 = xik,1

and yk,2 = ¬xik,2
.

• fdk,1
= cik,1 ,1 ∨ xik,2 ,1 if k ∈ [m] and yk,1 = ¬xik,1

and yk,2 = xik,2
.

• fdk,1
= cik,1 ,1 ∨ cik,2,1 if k ∈ [m] and yk,1 = ¬xik,1

and yk,2 = ¬xik,2
.

• fdk,2
= dk,1 ∨ xik,3 ,2 if k ∈ [m] and yk,3 = xik,3

.

• fdk,2
= dk,1 ∨ cik,3 ,2 if k ∈ [m] and yk,3 = ¬xik,3

.

• fdk,`+2
= dk,`+1 for k ∈ [m] and ` ∈ [k− 1].

• fe1 = d1,2.

• fek+1
= ek ∧ dk,k+1 for k ∈ [m].

• fem+r+1 = em+r for r ∈ [L− 5 −m].

Clearly, this system is a quadratic monotone system. It remains to show that ψ is
satisfiable iff the above system has a limit cycle of length two iff the above system is not a
steady state system.

Let f(z̄) denote the successor state of a state z̄ of our system, and let f r(z̄) denote the
r-th successor of z̄.

We call a state of the system a one-state if at least one of the following holds:

1. ti = 1 for some i ∈ [n+ 1].

2. wi,j = 1 for some i ∈ [n], j ∈ [i].

8



3. xi,` = ci,` = 1 for some i ∈ [n], ` ∈ [L]\{L− 1}.

4. xi,L−1 = ci,L−1 = 1 and eL−4 = 1.

Lemma 5 (i) If the system starts from a one-state, then it will eventually reach the steady
state [1, . . . , 1].
(ii) A one-state can only be reached from another one-state.
(iii) The basin of attraction of the steady state [1, . . . , 1] is the set of all one-states.

Proof: If z̄ satisfies condition 4, then f(z̄) will satisfy condition 3. If z̄ satisfies condition 3,
then f r(z̄) will satisfy condition 2 for some r ∈ [L]. If z̄ satisfies condition 2, then f r(z̄)
will satisfy condition 1 for some r ∈ [n]. If z̄ satisfies condition 1, then f r(z̄) will satisfy
tn+1 = 1 for some r ∈ [n], and this will continue to be true for all subsequent states. If z̄
satisfies tn+1 = 1, then f r(z̄) will satisfy xi,1 = ci,1 = 1 for all i ∈ [n] for all positive r. For
sufficiently large r all remaining variables of f r(z̄) can be expressed as monotone functions
of the values that xi,1 and ci,1 = 1 took in some state f s(z̄) with 0 ≤ s < r, and thus must
turn to one. These observations prove part (i) of the lemma.

For the proof of part (ii) note that if f(z̄) satisfies condition 1, then z̄ must satisfy
condition 1 or condition 2; if f(z̄) satisfies condition 2, then z̄ must satisfy condition 2 or
condition 3; if f(z̄) satisfies condition 3, then z̄ must satisfy condition 3, condition 4, or
tn+1 = 1; if f(z̄) satisfies condition 4, then z̄ must satisfy condition 3.

Part (iii) is an immediate consequence of parts (i) and (ii). �

Let ` ∈ [L]. We will say that a state of the system is a zero-state of modulus ` if it is
not a one-state and xi,` = ci,` = 0 for some i ∈ [n].

Lemma 6 (i) If ` ∈ [L] and if z̄ is a zero-state of modulus `, then the state f2L(z̄) will
satisfy xi,` = ci,` for all i ∈ [n].
(ii) If z̄ is a zero-state of modulus ` simultaneously for all ` ∈ L, then f3L(z̄) = [0, . . . , 0].
(iii) If z̄ is any state from which the system reaches a limit cycle of length > 1, then there
exists a nonnegative integer r such that for every nonnegative integer s the state f r+sL(z̄)
is neither a one-state nor a zero-state of modulus 1.

Proof: Suppose z̄0 is a zero-state of modulus `. The values of xi,` will cycle in L steps
through xi,`+1, xi,`+2, . . . , xi,`−1 back to xi,`. Along the way, a value of xi,j may change
from 1 to 0, but it cannot change from 0 to 1 unless the system is in a one-state, which
is precluded by the definition of a zero-state of modulus ` and Lemma 5(ii). A similar
observation holds for ci,`. Thus in at most L steps, the system reaches a zero-state of
modulus 1; let us call this state z̄ and note that z̄ = fL+1−`(z̄0). It will be succeeded by a
state where vi,1 = 0 for some i ∈ [n], and this value will be propagated until it is used to
calculate ui. More precisely, the state f i+1(z̄) will satisfy ui = 0; and for all r ∈ [L− 3− i]
it will be the case that f i+r(z̄) satisfies ui+r−1 = 0. Thus uL−4 = 0 in state fL−3(z̄), which
implies that fL−2(z̄) turns all xi,L−1, ci,L−1 into 0’s, and their shifted copies xi,`, ci,` will all
be 0 in the state fL−1+`(z̄) = f2L(z̄0). This proves part (i).

9



Now let z̄ be a state as in the assumption of part (ii). By part (i), the state f2L(z̄) has
0’s in all variables xi,`, ci,`, and this will continue to hold in all subsequent states. Since
z̄ is not a one-state, the variable tn+1 must be zero in state z̄ and must remain 0 in state
f2L(z̄) by Lemma 5. Now notice that every variable of the system in state f3L(z̄) can be
expressed as a monotone function of the values that tn+1, xi,`, ci,` for i ∈ [n], ` ∈ [L] take in
state f2L(z̄), and thus will be 0. This proves part (ii).

Now assume z̄ is as in the assumptions of part (iii). Then z̄ and any of its successors
is not a one-state by Lemma 5. Note that if z̄ is a zero-state of modulus `, then f(z̄) is
a zero-state of modulus ` + 1 (or of modulus 1 if ` = L). Thus it follows from part (ii)
that if f t(z̄) 6= [0, . . . , 0] for all times t, the system must, for some nonnegative integer r,
enter a state f r(z̄) that is not a zero-state of modulus 1, and neither is f r+sL(z̄) for any
nonnegative integer s. �

Lemma 7 If ψ is not satisfiable, then the system is a steady state system.

Proof: Assume that z̄ is a state from which a limit cycle of length > 1 is reached. By
Lemma 6(iii), we may assume wlog that z̄ is neither a one-state nor a zero-state of modulus 1,
and neither is fL(z̄). Note that this implies that in state z̄, for all i ∈ [n] we have ci,1 = ¬xi,1.
It follows from the choice of the corresponding regulatory functions that in state f(z̄)
we have dk,1 = yk,1 ∨ yk,2 (where the y’s are computed from the xi,2’s of f(z̄)), and in
state f2(z̄) we have dk,2 = ψk(x1,3, . . . , xn,3). Furthermore, in state f3(z̄) we will have
e1 = ψk(x1,4, . . . , xn,4), and straightforward induction shows that for r ∈ [L −m − 4] the
state fm+2+r(z̄) will satisfy em+r = ψ(x1,m+3+r, . . .xn,m+3+r). The value eL−4 of state
fL−2(z̄) will be used to compute xi,L and ci,L in fL−1(z̄) from xi,L−1, ci,L−1. Our choice of
z̄ implies that we must have eL−4 = 1 in state fL−2(z̄); otherwise fL(z̄) would become a
zero-state of modulus 1. But eL−4 can be equal to 1 only if ψ is satisfiable. �

Lemma 8 If ψ is satisfiable, then our system has a limit cycle of length two.

Proof: Let x1,1, . . .xn,1 be such that ψ(x1,1, . . .xn,1) holds. Define an initial state z̄ as
follows: For odd `, let xi,` = xi,1 and ci,` = ¬xi,` for i ∈ [n]. For even `, let xi,` = ci,` = 0.
Set wi,j = 0 for all i ∈ [n] and j ∈ [i], and also let ti = 0 for all i ∈ [n+ 1]. Set vi,j = 1 for
all i ∈ [n] and even j ∈ [i], and vi,j = 0 for all i ∈ [n] and odd j ∈ [i]. Let u` = 1 for all
odd ` ∈ [L − 4] and u` = 0 for all even ` ∈ [L − 4]. Set dk,` = 0 for all k ∈ [m] and odd
` ∈ [k + 1]; for all k ∈ [m] and even ` ∈ [k + 1], set dk,` = 1. Finally, set e` = 0 for all odd
` ∈ [L− 4] and e` = 1 for all even ` ∈ [L− 4].

Clearly, f(z̄) 6= z̄. It is straightforward, if somewhat tedious, to verify that f2(z̄) = z̄.
This proves Lemma 8 and concludes the proof of Theorem 4. � �

Acknowledgements

This material is based upon work supported by the National Science Foundation under
Agreement No. 0112050 while the author was a visitor at the Mathematical Biosciences

10



Institute. The author wishes to thank the MBI for providing an excellent research environ-
ment.

References

[1] Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. (1998). Identification of Gene
Regulatory Networks by Strategic Gene Disruptions and Gene Overexpressions. Proc.
9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’98), 695–702.

[2] Colón-Reyes, O., Laubenbacher, R., and Pareigis, B. (2004). Boolean Monomial Dy-
namical Systems. Annals of Combinatorics, 8, 425–439.

[3] Elspas, B. (1959). The theory of autonomous linear sequential networks. IRE Transac-
tions on Circuit Theory CT-6, 45–60.

[4] Harris, S. E., Sawhill, B. K., Wuensche, A., Kauffman, S. (2002). A model of transcrip-
tional regulatory networks based on biases in the observed regulation rules. Complexity
7(4), 23–40.

[5] Hernández-Toledo, R. A. (2005). Linear finite dynamical systems. Communications in
Algebra 33, 2977–2989.

[6] Jarrah, A. S., Laubenbacher, R., and Vera-Licona, P. (200?) An efficient algorithm for
finding the phase space structure of linear finite dynamical systems. In review.

[7] Korshunov, A. D. and Shmulevich, I. (2002). On the distribution of the number of
monotone Boolean functions relative to the number of lower units. Discrete Mathematics
257, 463–479.

[8] Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolu-
tion. Oxford U Press.

[9] Milligan, D. K. and Wilson, M. J. D. (1993). Connection Science 5, 153–167.

11


