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Who are we?
What are we doing here?

A population of interacting organisms.

Behavior is controlled by an organ, the brain.

Brain output is based on the firing patterns of interconnected
and interacting cells, the neurons.

We would like to decipher the “neural code.”
This is one of the big open problems in biology.

The firing of an individual neuron is generated by changes in
concentration of certain molecules and ions. Such
concentrations change as the result of chemical reactions.

I am ignoring ion transport here.
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Mathematical modeling is a process of selective ignorance.
(Louis Gross)

Judiciously choosing what to stay ignorant about can help us in
seeing the forest behind the trees.

With how much ignorance can we get away with and still discover
something true and biologically relevant?
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Who are we?
What are we doing here?

A population of interacting organisms.

Behavior is controlled by an organ, the brain.

Brain output is based on the firing patterns of interconnected and
interacting cells, the neurons.

The firing of an individual neuron is generated by changes in
concentration of certain molecules and ions. Such concentrations
change as the result of chemical reactions.

What is going on in this room is simply the dynamics of
gigantic networks of chemical reactions. The rest is what
biologists call emergent properties.
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Networks in biology

Networks occur at all levels of biological organization.

Many biological questions can be framed in terms of network
dynamics.
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What is a network anyway?

The connectivity of a network is given by a digraph D.

The nodes of D may represent organisms, neurons, chemical
species or other types of agents.

The arcs of D represent interactions.
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The seminar network
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What is a network anyway?

The connectivity of a network is given by a digraph D.

The nodes of D may represent organisms, neurons, chemical species
or other types of agents.

The arcs of D represent interactions.

Each node has a state at any given time, the state of the
whole network is the vector of all these individual states.

The network dynamics is the change of the state vector
over time.
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Discrete and continuous networks

We will consider here only two types of networks:

Discrete networks for which time takes on integer values and
the state space is finite.

Continuous flows for which time is modeled by reals and the
state space is some n-dimensional manifold.
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What is a network anyway?

The connectivity of a network is given by a digraph D.

The nodes of D may represent organisms, neurons, chemical species
or other types of agents.

The arcs of D represent interactions.

Each node has a state at any given time, the state of the whole
network is the vector of all these individual states.

The network dynamics is the change of the state vector over time.

The dynamics determined by any initial state is called the
trajectory of this state.

A steady state is a state whose trajectory remains
constant.

We will only consider networks here for which each
trajectory approaches an attractor.
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Moving down to base level

ecosystems

populations

organisms

organs

tissues

cells

organelles

molecules
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A chemical reaction network

Suppose A,B represent chemical species of interest who
participate only in the following reactions:

A + B → 2A, B + P → 2B, A→W .

Can we isolate these reactions from the larger network?
How?
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The larger network
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First try: Ignore everything else
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First try: Ignore everything else

Let the state of a chemical species X be represented by its
concentration [X ]; assume mass action kinetics. Then

A + B → 2A, B + P → 2B, A→W

define a continuous flow

d [A]

dt
= k1[A][B]− k2[A]

d [B]

dt
= k3[B][P]− k1[A][B]

d [P]

dt
= −k3[B][P]

d [W ]

dt
= k2[A].

The only attractor is the steady state with [A] = [B] = [P] = 0.
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Second try: Ignore P and W as well
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Second try: Ignore P and W as well

Suppose P is always plentiful and present in practically the same
concentration. Then our system becomes

A + B → 2A, B → 2B, A→ ∅,

which defines a continuous flow

d [A]

dt
= k1[A][B]− k2[A]

d [B]

dt
= k3[B]− k1[A][B].

For suitable choices of k1, k2, k3 the system has a cyclic attractor.
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A general question

Network modeling in biology usually focuses on a small subnetwork
of interest and ignores the embedding of this subnetwork in much
larger ones. This approach seems to work quite well much of the
time.

Why?

Under what conditions should we be able to isolate the small
subnetwork of interest?
Why should there even exist a small subnetwork of interest?
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Moving to the top level

ecosystems

populations

organisms

organs

tissues

cells

organelles

molecules
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Food webs

The nodes represent biological species.

The arcs represent predation (who eats whom).

The state of a node usually represents the population size.

For example, species A might be amoeba who feed on bacteria B.
The state variable a represents the number of amoeba, the state
variable b the number of bacteria.
Let us assume bacteria have plenty of food and never die except
when eaten by amoeba. They multiply by cell division. Amoeba
may die at random times and need to eat a certain number of
bacteria to accumulate the energy for cell division.
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First try: a discrete model

Clearly, a and b are integers. Cell division and predation are
discrete events. So let us try to build a discrete individual-based
model where time moves from one cell division or predation event
to the next.

There are two problems:

We need to somehow record the fraction of energy that an
individual amoeba has already accumulated towards cell
division.

The type of the next event that will happen (a cell division,
death of an amoeba, or predation event) is not completely
determined by the current state.

This kind of modeling gives us a Markov Chain with a very large
state space and the model may be difficult to simulate and analyze.
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Second try: a continuous model

Clearly, a and b are large integers. Let us treat them as fractions
of, say, one million and pretend the state space is continuous.

The increase in a due to cell division as a result of successful
predation will be proportional to ab, the decrease in a due to
random death will be proportional to a.

da

dt
= k1ab − k2a.

The increase in b due to cell division will be proportional to b, the
decrease in b due to predation will be proportional to ab.

db

dt
= k3b − k1ab.

Looks familiar?
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Moving down a few levels

ecosystems

populations

organisms

organs

brain tissues

cells

organelles

molecules
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An ODE Model of Neuronal Networks
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Each excitatory (E -) cell satisfies

dvi
dt

= f (vi ,wi )− gEI

∑
s Ij (vi − v I

syn)

dwi

dt
= εg(vi ,wi )

dsi
dt

= α(1− si )H(vi − θE )− βsi .

Each inhibitory (I -) cell satisfies

dv I
i

dt
= f (v I

i ,w
I
i )− gIE

∑
sj(v I

i − vE
syn)− gII

∑
s Ij (v I

i − v I
syn)

dw I
i

dt
= εg(v I

i ,w
I
i )

dx I
i

dt
= εαx(1− x I

i )H(v I
i − θI )− εβxx I

i

ds Ii
dt

= αI (1− s Ii )H(x I
i − θx)− βI s Ii .
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Mathematical Neuroscience is Difficult!

Individual neurons are usually modeled by the the
Hodgkin-Huxley Equations.

Nonlinear ODEs involving multiple time scales.
Hard to analyze both mathematically and computationally.

Neuronal networks involve a large number of individual
neurons.

Details of the connectivity not usually known.
Hard to analyze how connectivity influences ODE dynamics.

Fortune cookie: Doing the impossible is kind of fun.
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A manageable problem?

Recordings from certain neuronal tissues reveal the following
pattern: Time seems to be partitioned into episodes with
surprisingly sharp boundaries. During one episode, a group of
neurons fires, while other neurons are at rest. In the next episode, a
different group of neurons fires. Group membership may vary from
episode to episode, a phenomenon called “dynamic clustering.”

Why?

Can we mathematically explain this phenomenon?
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Some Simple Facts

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

Let us build a simple model of neuronal networks based on
these facts.
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A Discrete Dynamical System Model

A directed graph D = [VD ,AD ] and integers n (size of the
network), pi (refractory period), thi (firing threshold).

A state ~s(t) at the discrete time t is a vector:
~s(t) = [s1(t), . . . , sn(t)] where si (t) ∈ {0, 1, . . . , pi} for each i .
The state si (t) = 0 means neuron i fires at time t.

Dynamics on the discrete network:

If si (t) < pi , then si (t + 1) = si (t) + 1.

If si (t) = pi , and there exists at least thi neurons j with
sj(k) = 0 and < j , i > ∈ AD , then si (t + 1) = 0.

If si (t) = pi and there do not exist thi neurons j with
sj(t) = 0 and < j , i > ∈ AD , then si (t + 1) = pi .
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An Example

Assume that refractory period= 1 and threshold= 1.
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Is this model realistic?

The model we just described does not explain dynamic clustering,
since we built this phenomenon into the model right from the
outset. But we would have a plausible explanation for the
phenomenon if we could show, at least for some types of neuronal
networks, that there is an exact correspondence between the ODE
dynamics and the dynamics predicted by our discrete model.
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An Architecture

I1, I3 I2, I4 I3, I5 I2, I4

E2, E4E3, E5E2, E4,
E3(ref)E1, E3

Excite Inhibit

E 1 → E 2,E 3

E 2 → E 3

E 3 → E 2,E 4

E 4 → E 5

E 5 → E 4

Assume: E-cells can excite one another via

interneurons.
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The ODE Model Predicts Discrete Episodes

Consider 100 E -cells and 100 I -cells. Each E -cell excites one I -cell
and each I -cell inhibits nine E -cells.
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Reducing Neuronal Networks to Discrete Dynamics,
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Theorem

For the network architecture described above, if the intrinsic and
synaptic properties of the cells are chosen appropriately, then there
is an exact correspondence between solutions of the continuous
and discrete systems for any connectivity between the excitatory
and inhibitory cells.
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Continuous and Discrete Models

Assume that refractory period= 1 and threshold= 1.
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Different Transients and Attractors
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Studying the discrete model

For a given discrete model N =< D, ~p, ~th > we may ask about the
(possible, maximal, average)

lengths of the attractors,

number of different attractors,

lengths of transients.
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Some Special Digraphs

Cyclic digraphs.

Cyclic digraphs with one shortcut.

Strongly connected digraphs: There is a directed path from
every node to every other node.

....

What kind of dynamical properties are implied by these special
connectivities?

Winfried Just at OU Discrete and Indiscrete Models of Biological Networks



Cyclic Digraph on n Nodes Sungwoo Ahn, Ph. D. Thesis 2010

Theorem

Let ~p = [p1, . . . , pn], ~th = [1, . . . , 1] >, and p∗ = max~p. Then

If ~p = [p, . . . , p] is constant, the length of any transient is at
most 2p − 1.

If p∗ < n , the length of any transient is at most n + p∗ − 3.

If p∗ ≥ n, the length of any transient is at most
max{n + p∗ − 1, 3n − 2}.
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Cyclic Digraph on n Nodes Sungwoo Ahn, Ph. D. Thesis 2010

Theorem

Let ~p = [p1, . . . , pn], ~th = [1, . . . , 1] >, and p∗ = max~p.

The number of different attractors is equal to the number of
different necklaces consisting of n black or red beads where all the
red beads occur in blocks of length that is a multiple of p∗ + 1. It
is equal to

b n
p∗+1

c∑
k=1

 1

n − kp∗

∑
a∈{divisors of gcd(k,n−kp∗)}

φ(a)

(n−kp∗
a
k
a

)+ 1,

where φ is Euler’s phi function.
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Cyclic Digraph on n Nodes Sungwoo Ahn, Ph. D. Thesis 2010

Theorem

Let ~p = [p1, . . . , pn], ~th = [1, . . . , 1] >, and p∗ = max~p.

The length of any attractor is a divisor of n.

Surprise: Numerical exploration suggest that the same is true for
any strongly connected digraph.
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Two Conjectures Sungwoo Ahn, Ph. D. Thesis 2010

Let n be the number of nodes; assume that all refractory periods
and all firing thresholds are 1.

1 Conjecture 1. In strongly connected digraphs any attractor
has length at most n.

2 Conjecture 2. In cyclic digraphs with one shortcut any
attractor has length at most n.

Conjecture 2 was proved to be true in the thesis.

Conjectures 1 is still open.
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Some Special Objects

~s~p = [p1, . . . , pn] is the only steady state attractor.

A minimal attractor is one in which each neuron either never
fires or fires as soon as it reaches the end of its refractory
period.

An autonomous set consists of neurons that fire as soon as
they reach the end of their refractory periods, regardless of
the dynamics of neurons outside of this set.
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Random Connectivities

For given n, we randomly generate a digraph with n nodes by
including each possible arc < i , j > with probability ρ(n);
independently for all arcs (Erdős-Rényi random digraph).

We randomly generate many initial conditions and collect
statistics on minimal attractors and the size of the largest
autonomous set.

How do these properties depend on ρ(n)?
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Results of the Simulations Just W, Ahn S, Terman D, Physica D. 2008
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Minimal Attractors in Digraph System Models of Neuronal
Networks, by Just W, Ahn S, Terman D, Physica D. 2008

Theorem

1 The first phase transition at ρ(n) ∼ ln n
n :

Above this threshold: a generic initial state belongs to a (fully
active) minimal attractor.
Below this threshold: a generic initial state will not belong to a
minimal attractor.

2 The second phase transition at ρ(n) ∼ c
n :

Above this threshold: almost all nodes will belong to the
largest autonomous set.
Below this threshold: the relative size of the largest
autonomous set will be close to zero.
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Directions for Further Research

Another phase transition was detected for ρ(n) ∼ 1
n .

Systematically explore what is going on in this region.

Explore these phenomena for random digraphs other than
Erdős-Rényi random digraphs (e.g., scale-free degree
distributions).
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Moving down to base level

ecosystems

populations

organisms

organs

tissues

cells

organelles

molecules
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Gene regulation

What’s going on in a cell biochemically at any given time is
determined by which genes are being expressed at the time.

The possible expression patterns form the states of the gene
regulatory network, and everything else in biology is an emergent
property of the dynamics of this network.

How can we study this network?
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Boolean models of gene regulation

It is difficult to measure actual concentration of gene products
(mRNA) with reasonable accuracy. But it is easy to take fuzzy
snapshots of mRNA levels at different times even for all genes of
an organism simultaneously using microarrays. These snapshots
reveal only whether the expression level of a gene is high or low
(sort of).

One is thus tempted to model gene regulation with
Boolean networks, where

expression levels take only values 0 (low) and 1 (high),

time proceeds in discrete steps,

at each time step, all genes are updated simultaneously.

Every one of these assumptions is biologically unrealistic.
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Boolean models work

Nevertheless, this approach often works surprisingly well and has
already generated a number of real biological insights.

Why?

Can we mathematically explain why this works as well as it does?
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