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Biological systems with switch-like behavior

Many biological systems exhibit switch-like behavior. Examples
include gene-regulatory networks where at a given time a gene may
be either expressed or not expressed, neuronal networks, where a
neuron may either be firing or resting, in SI or SIS disease
dynamics, an individual can be either infectious or susceptible.

Such systems often can be modeled either by ODE systems or by
Boolean networks that distinguish only on and off states.
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Modeling with ODE vs. Boolean systems

ODE models are based on biologically more realistic assumption
and are expected to make more reliable predictions. However, it is
usually impossible to study them analytically, and for large system
even numerical explorations of such models may be infeasible.

Boolean models are much easier to study, but they are further
removed from biological reality.

When can we be assured that a Boolean model B and an
ODE model D of the same biological system make
qualitatively equivalent predictions?
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What do you mean by the same?

Of course, a Boolean system B cannot literally make the same
predictions as an ODE system D. So we need to rigorously define
what we mean by this.

The first step is to discretize relevant variables.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



What do you mean by the same?

Of course, a Boolean system B cannot literally make the same
predictions as an ODE system D. So we need to rigorously define
what we mean by this.

The first step is to discretize relevant variables.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Examples of discretization

In gene regulation, one may distinguish mRNA concentrations
below a threshold Θ from mRNA concentrations above a
threshold Θ.

In modeling neuronal networks, one may distinguish
cross-membrane voltages below a threshold Θ from
cross-membrane voltages above a threshold Θ.

Note that in both of these examples only some variables of the
system are being assigned Boolean values 0 or 1. Other variables
of the ODE system (gene product concentrations, gating variables)
are being ignored in these examples.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Another example of discretization

In modeling infectious diseases, an individual is classified as
infectious if the viral load is above a threshold Θv .

This discretization now can be used to build either agent-based
stochastic Boolean models Bagent or deterministic ODE SI or
SIS models D. The latter are based on the proportion of
individuals in the I -class.

Now one could study a second discretization based on whether
this proportion is below or above a threshold Θc and compare the
predictions of the resulting Boolean model Bsystem with those of D.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Another example of discretization

In modeling infectious diseases, an individual is classified as
infectious if the viral load is above a threshold Θv .

This discretization now can be used to build either agent-based
stochastic Boolean models Bagent or deterministic ODE SI or
SIS models D. The latter are based on the proportion of
individuals in the I -class.

Now one could study a second discretization based on whether
this proportion is below or above a threshold Θc and compare the
predictions of the resulting Boolean model Bsystem with those of D.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



A formal definition of discretization of variables

First we need to choose partitions of the state space SD of the
ODE system D into disjoint regions (R i

0,R
i
1). Then we can assign

to every state ~x of the ODE system D a corresponding Boolean
state ~s = Φ(~x) ∈ SB such that

si = 0⇔ ~x ∈ R i
0,

where si denotes the i-th coordinates of ~s.

Note that the dimensions of the resulting Boolean vectors do not
need to be the same as those of ~x .

Note also that an analogous procedure also works for discretizing
the ODE states into more than two regions and discrete models
with more than two states per variable.
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Corresponding trajectories: First try

Now we want to extend the correspondence between states to a
correspondence between trajectories.

The map Φ : SD → SB gives us, for every initial state ~x(0) ∈ SD, a
function Ψ~s(0) : [0,∞)→ SB such that Ψ~s(0)(t) = Φ(~s(t)) for all
t ∈ [0,∞). Let us call this the continuous-time Boolean
trajectory ∆(~x(0)).

Now we need to turn this into an actual discrete-time Boolean
trajectory. The most natural idea would be define

∆(~x(0)) = (~s(0),~s(1),~s(2), . . .)

as the sequence of successive Boolean states that we observe
in Ψ~s(0).
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Strong consistency

Assume something like this has been done.

Given D,B, an open region U of SD, and the updating function f
of B, we say that B is strongly consistent with D on U if for
all ~x(0) ∈ U and all τ ∈ N:

~s(τ + 1) = f (~s(τ)), (1)

where (~s(0),~s(1),~s(2), . . .) = ∆(~x(0)).

If (1) holds for some U as above such that Φ maps U onto the
state space of B, then we say that D realizes B.
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Strong consistency may be too much to hope for

Think about a two-dimensional Boolean system B where
f (s1, s2) = 11 iff s1 = s2 = 0 and f (s1, s2) = 00 otherwise.
Consider a discretization of (x1x2) ∈ SD based on thresholds
Θ1,Θ2.

Now if for all ~x(0) and all τ ∈ N

~s(τ + 1) = f (~s(τ)), (2)

then we have a problem: In an ODE system, generically different
variables do not cross their thresholds simultaneously. So we
cannot have strong consistency with B on the whole state space of
any ODE system D!

But we need (2) only for all ~x(0) ∈ U; so B may still be realized
by some ODE systems D.
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Where do we want to go with this

We want to prove that biologically relevant classes of ODE
systems have consistent Boolean approximations. We can try:

Focus on some interesting U.

Focus on some interesting classes of Boolean systems.

Weaken the notion of strong consistency.

Tinker with the definition of the discrete-time Boolean
trajectory.

Study these problems for some toy models first.

In the remainder of this talk I will briefly review some research that
has been done along these lines.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Where do we want to go with this

We want to prove that biologically relevant classes of ODE
systems have consistent Boolean approximations. We can try:

Focus on some interesting U.

Focus on some interesting classes of Boolean systems.

Weaken the notion of strong consistency.

Tinker with the definition of the discrete-time Boolean
trajectory.

Study these problems for some toy models first.

In the remainder of this talk I will briefly review some research that
has been done along these lines.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Where do we want to go with this

We want to prove that biologically relevant classes of ODE
systems have consistent Boolean approximations. We can try:

Focus on some interesting U.

Focus on some interesting classes of Boolean systems.

Weaken the notion of strong consistency.

Tinker with the definition of the discrete-time Boolean
trajectory.

Study these problems for some toy models first.

In the remainder of this talk I will briefly review some research that
has been done along these lines.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Where do we want to go with this

We want to prove that biologically relevant classes of ODE
systems have consistent Boolean approximations. We can try:

Focus on some interesting U.

Focus on some interesting classes of Boolean systems.

Weaken the notion of strong consistency.

Tinker with the definition of the discrete-time Boolean
trajectory.

Study these problems for some toy models first.

In the remainder of this talk I will briefly review some research that
has been done along these lines.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Where do we want to go with this

We want to prove that biologically relevant classes of ODE
systems have consistent Boolean approximations. We can try:

Focus on some interesting U.

Focus on some interesting classes of Boolean systems.

Weaken the notion of strong consistency.

Tinker with the definition of the discrete-time Boolean
trajectory.

Study these problems for some toy models first.

In the remainder of this talk I will briefly review some research that
has been done along these lines.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Where do we want to go with this

We want to prove that biologically relevant classes of ODE
systems have consistent Boolean approximations. We can try:

Focus on some interesting U.

Focus on some interesting classes of Boolean systems.

Weaken the notion of strong consistency.

Tinker with the definition of the discrete-time Boolean
trajectory.

Study these problems for some toy models first.

In the remainder of this talk I will briefly review some research that
has been done along these lines.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



Where do we want to go with this

We want to prove that biologically relevant classes of ODE
systems have consistent Boolean approximations. We can try:

Focus on some interesting U.

Focus on some interesting classes of Boolean systems.

Weaken the notion of strong consistency.

Tinker with the definition of the discrete-time Boolean
trajectory.

Study these problems for some toy models first.

In the remainder of this talk I will briefly review some research that
has been done along these lines.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Boolean vs. ODE models



An interesting class of Boolean systems

Let us call a Boolean system one-stepping if

H(~s(τ),~s(τ + 1)) ≤ 1

for all τ along each trajectory where H denotes Hamming distance.

For one-stepping Boolean systems simultaneous crossing of
thresholds in the ODE system is not an issue. These Boolean
systems can be realized in the sense of strong consistency by many
classes of ODE systems.

Gehrman and Drossel for gene regulatory networks.

Just et al. for a class of toy models.

Later talks in this session.
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Dynamic clustering in neuronal networks

In several neuronal networks, it has been observed that time
appears to progress in distinct episodes in which some
subpopulation of cells fire synchronously; however, membership
within this subpopulation may change over time. That is, two
neurons may fire together during one episode but not during a
subsequent episode. This phenomenon is called dynamic
clustering.
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How to explain dynamic clustering?

This is a strange phenomenon. As far as is known, there is no
central pacemaker in these networks. The episodes are an
emergent property of the internal dynamics of individual neurons
and their interactions.

Problem: Are there classes of ODE models, based on
Hodkin-Huxley equations for individual neurons that exhibit
dynamic clustering? If so, can the firing patterns be predicted by
Boolean approximations?
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A theorem
Terman D, Ahn S, Wang X, Just W, Physica D, 2008

Theorem

There exists a broad class of ODE models D for neuronal networks
such that every model in this class exhibits dynamic clustering.

Moreover, for every such D there exists a Boolean model B that is
strongly consistent with D on a set U that every trajectory
eventually enters. Conversely, every Boolean model can be realized
by an ODE model D in this class.

In this theorem we use a version of strong consistency that is based
on a slightly altered definition of ∆(~s(0)); essentially the episodes
give us a neat way to discretize time and “next Boolean state” is
determined by which neurons fire during the episode; we ignore the
slight fuzziness at the boundaries of the episodes.
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Weak consistency

Instead of demanding

~s(τ + 1) = f (~s(τ)), (3)

where (~s(0),~s(1),~s(2), . . .) = ∆(~x(0)) where ~s(0) ∈ U we could
just require that

si (τ + 1) = fi (~s(τ)), (4)

where i is such that si (τ + 1) 6= si (τ) and fi is the regulatory
function for si .

This leads to a notion of weak consistency.

The classical work of Leon Glass and his collaborators shows that
this form of consistency holds for Boolean approximations of a
large class of piecewise linear ODE systems.
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A class of toy models

Our research group at OU explored a class of toy ODE models
specifically designed to study mechanisms that gives various forms
of consistency.

ODEs have Lipschitz-continuous right-hand sides.

Group variables into “agents.”

Treat variables outside the agent as bifurcation parameters for
the internal dynamics of the agent.

Agents react slowly to change of bifurcation parameters,
which leads to separation of time scales.

Depending on bifurcation parameters, the i-th agent has
either one globally asymptotically stable or two locally
asymptotically stable equilibria. These equilibria reside in R0

and R1 respectively.
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Some results for the toy model

One can get strong consistency under sufficient separation of
time scales for all one-stepping Boolean systems.

For some one-stepping Boolean systems this works only if
each agent has at least two variables.

Every Boolean system can be embedded in a one-stepping
Boolean system. Thus with some coding and larger agents,
one can get strong consistency for all Boolean systems.
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Directions for further research

Larger agents (more intermediate variables that will be
ignored in the Boolean model) seem to favor consistency.
How generic is this phenomenon?

Investigate weak consistency for our toy models.

Investigate notions of ε-consistency where switches of the
Boolean state that occur within ε real time units are treated
as simultaneous.
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