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Some empirical observations

Recordings from certain neuronal tissues such as the olfactory bulb
of mammals or the antennal lobe of insects reveal the following
pattern: Time seems to be partitioned into episodes with
surprisingly sharp boundaries. During one episode, a group of
neurons fires, while other neurons are at rest. In the next episode, a
different group of neurons fires. Group membership may vary from
episode to episode, a phenomenon called “dynamic clustering.”

How can we mathematically explain this phenomenon?
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An ODE model of neuronal networks
from Terman D, Ahn S, Wang X, Just W, Physica D, 2008

Each excitatory (E -) cell satisfies

dvi
dt

= f (vi ,wi )− gEI

∑
s Ij (vi − v I

syn)

dwi

dt
= εg(vi ,wi )

dsi
dt
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Some simulation results
Ahn S, Smith BH, Borisyuk A, Terman D, Physica D, 2010

Certain excitatory-exhibitory networks models based on these ODEs
reproduce the empirically observed pattern of dynamic clustering.
The ODE models for these networks predict the pattern.

But how can we explain what is going on?

Can we build a simpler discrete model?

If so, would this explain the observations?

(Why, when) does the discrete dynamics reliably reflect the
underlying ODE dynamics?
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Neuroscience for the rest of us

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

Let us build a simple model of neuronal networks based on
these facts.
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A discrete dynamical system model
Ahn S, Smith BH, Borisyuk A, Terman D, Physica D, 2010

A directed graph D = [VD ,AD ] and integers n (size of the
network), pi (refractory period), thi (firing threshold).

A state ~s(t) at the discrete time t is a vector:
~s(t) = [s1(t), . . . , sn(t)] where si (t) ∈ {0, 1, . . . , pi} for each i .
The state si (t) = 0 means neuron i fires at time t.

Dynamics on the discrete network N =< D, ~p, ~th >:

If si (t) < pi , then si (t + 1) = si (t) + 1.

If si (t) = pi , and there exists at least thi neurons j with
sj(k) = 0 and < j , i > ∈ AD , then si (t + 1) = 0.

If si (t) = pi and there do not exist thi neurons j with
sj(t) = 0 and < j , i > ∈ AD , then si (t + 1) = pi .
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An Example

Assume that refractory period= 1 and threshold= 1.
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Continuous and Discrete Models

Assume that refractory period= 1 and threshold= 1.
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But is the discrete model accurate?

Simulation results show a good correspondence between the
dynamics predicted by the discrete model and the underlying more
realistic ODE model. But can we rigorously prove such a
correspondence?
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Reducing neuronal networks to discrete dynamics,
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Theorem

For excitatory-inhibitory networks with a certain architecture, if the
intrinsic and synaptic properties of the cells are chosen
appropriately, then there is an exact correspondence between the
trajectories of the continuous and discrete systems for any
connectivity between the excitatory and inhibitory cells.
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Open Problem

In general, under which conditions does there exist an “exact
correspondence” between an ODE system and a Boolean system?

For more on this question, come see my poster on Friday.
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Modeling of models

We usually think of a mathematical model as an idealization of
some real-world systems. In the research described above, the
discrete model can be thought of as a simpler model of the
underlying ODE model.

(How, to what extent) should we teach about approximating
(modeling) of complicated models by simpler ones?
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Bad idea. Forget it.

Teaching about models only as idealizations of real biological
systems is hard enough. Talking about the relation between two or
more different models will confuse students even more.
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Good idea. You can’t avoid talking about multiple models.

We do it whenever we talk about testing the predictions of a
model against data and “revising the” model.

Approximating models by simpler ones is very, very basic.
Derivation of Michaelis-Menton kinetics is an example.
Numerical analysis of DE systems is based on approximating
by difference equations. This is another example.

Sometimes it is difficult to discern whether a model really
explains a phenomenon (like dynamic clustering) or whether
the phenomenon is simply built into the model by the choice
of modeling paradigm without considering multiple models.

A paradigm of studying complex systems with a “suite” of
models appears to be emerging (C. Jones, UNC, Chapel Hill).
This may be especially important in climate modeling, and
perhaps the modeling of evolution, where our possibilities for
running experiments are severely limited.
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Studying the discrete model

There a many good problems here, including ones suitable for
undergraduate research.

For a given discrete model N =< D, ~p, ~th > we may ask about the
(possible, maximal, average)

lengths of the attractors,

number of different attractors,

sizes of their basins of attraction,

lengths of transients

... .
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Some special connectivities

Cyclic digraphs.

Cyclic digraphs with one shortcut.

Strongly connected digraphs: There is a directed path from
every node to every other node.

Regular digraphs.

...

What kind of dynamical properties are implied by these special
connectivities?
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Cyclic digraph on n nodes Sungwoo Ahn, Ph. D. Thesis 2010

Theorem

Let ~p = [p1, . . . , pn], ~th = [1, . . . , 1] >, and p∗ = max~p. Then for
cyclic digraphs D with n vertices the system N =< D, ~p, ~th >
satisfies:

The length of any attractor is a divisor of n.

The length of any transient is at most n + 2p∗ − 3.

The number of different attractors is equal to the number of
different necklaces consisting of n black or red beads where all
the red beads occur in blocks of length that is a multiple of
p∗ + 1. It is equal to

b n
p∗+1

c∑
k=1

 1

n − kp∗

∑
a∈{divisors of gcd(k,n−kp∗)}

φ(a)

(n−kp∗
a
k
a

)+ 1,

where φ is Euler’s phi function.
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Attractor lengths in strongly connected digraphs
Ahn, S and Just, W, submitted.

Theorem

Let D be a strongly connected digraph with n vertices that does
not have two disjoint directed cycles. Then the length of any
attractor in N =< D,~1,~1 > is bounded by n.

The proof is difficult even for the special case of a Hamiltonian
cycle with one shortcut (S. Ahn, Ph.D. Thesis).

The complete formulation and proof of the above theorem actually
show that strongly connected digraphs for which N =< D,~1,~1 >
has attractors of length > n must have a very special structure.
The smallest known example of a Hamiltonian such D has 26
vertices.
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Random connectivities

For given n, we randomly generate a digraph with n nodes by
including each possible arc < i , j > with probability ρ(n);
independently for all arcs (Erdős-Rényi random digraph).

We randomly generate many initial conditions.

We collect statistics on the proportion of initial states for
which the dynamics exhibits selected features.

How do these features depend on ρ(n)?
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Results of the simulations Just W, Ahn S, Terman D, Physica D. 2008
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Two phase transitions by Just W, Ahn S, Terman D, Physica D. 2008

Theorem

1 The first phase transition at ρ(n) ∼ ln n
n : Above this threshold,

in a generic trajectory all nodes will always fire as soon as
they reach the end of their refractory period.

2 The second phase transition at ρ(n) ∼ c
n : Above this

threshold, in a generic trajectory most nodes will always fire
as soon as they reach the end of their refractory period.

Winfried Just at Ohio University Discrete vs. Indiscrete Models of Network Dynamics



Two phase transitions by Just W, Ahn S, Terman D, Physica D. 2008

Theorem

1 The first phase transition at ρ(n) ∼ ln n
n : Above this threshold,

in a generic trajectory all nodes will always fire as soon as
they reach the end of their refractory period.

2 The second phase transition at ρ(n) ∼ c
n : Above this

threshold, in a generic trajectory most nodes will always fire
as soon as they reach the end of their refractory period.

Winfried Just at Ohio University Discrete vs. Indiscrete Models of Network Dynamics



Some questions that may be suitable for undergraduate
research

Another phase transition was detected for ρ(n) ∼ 1
n (see Ahn

S, Smith BH, Borisyuk A, Terman D, Physica D, 2010).
Explore what goes on in this (most interesting) region of the
parameter space.

Explore these phenomena for random digraphs other than
Erdős-Rényi random digraphs (e.g., scale-free degree
distributions).

Explore these questions for other special connectivities.

Explore these questions for related discrete models.
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An Architecture

I1, I3 I2, I4 I3, I5 I2, I4

E2, E4E3, E5E2, E4,
E3(ref)E1, E3

Excite Inhibit

E 1 → E 2,E 3

E 2 → E 3

E 3 → E 2,E 4

E 4 → E 5

E 5 → E 4

Assume: E-cells can excite one another

via interneurons.
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What, exactly, does ”exact correspondence” mean?

For simplicity assume ~p = ~1.

Partition the state space of E-cell number i into
complementary regions Fi (”firing”) and Ri (”resting”).

For individual trajectories time can be partitioned into
subsequent intervals of roughly equal lengths (”episodes”).

Except for slight fuzziness on the boundaries, throughout each
episode E-cell number i will reside either in Fi or in Ri .

The discrete model accurately predicts the movement
between Fi and Ri from one episode to the next for all E-cells
and all episodes.
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Some special objects

~s~p = [p1, . . . , pn] is the only steady state attractor.

A minimal attractor is one in which each neuron either never
fires or fires as soon as it reaches the end of its refractory
period.

A fully active attractor is one in which every neuron fires at
some time.

An autonomous set consists of neurons that fire as soon as
they reach the end of their refractory periods, regardless of
the dynamics of neurons outside of this set.
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