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The number of friends of your friends

Let v be a person, and let d(v) denote the number of v ’s friends.

Let F (v) denote the set v ’s friends, and let d1(v) be the
arithmetic mean of the set {d(w) : w ∈ F (v)}.
I claim that on average d(v) < d1(v).

This is an outrageous claim, for at least two reasons:

It seems counterintuitive. Since we have made no special
assumptions about v or v ’s friends, it seems that on average
v should have about as many friends as v ’s friends have on
average.

I (or anybody else) has only very little knowledge about the
actual number of friends of other persons.
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At least I’m in good company

The title of my talk is actually taken from a famous journal paper
that appeared two decades ago:

Feld, Scott L. (1991), ”Why your friends have more friends than
you do”, American Journal of Sociology 96(6): 1464–1477.

In the paper, the author gives a mathematical proof of my
outrageous claim.

How can one mathematically prove any such thing?

First we need to model people’s friendships with suitable
mathematical structures.
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Graphs

A graph consists of a set V of vertices or nodes and a set E
ofedges that connect some of the nodes. Formally, an edge e ∈ E
is an unordered pair {v ,w} of distinct nodes that the edge e
connects.

See
http://en.wikipedia.org/wiki/Gallery_of_named_graphs

for some nice pictures of graphs.

For example, the friendships between a group of people V can be
modeled by a graph whose nodes are the people in this group, and
an edge {v ,w} signifies that v and w are friends.

The degree d(v) of a node v is the number of edges that connect
to v . Note that in the friendship graph this is exactly the number
of v ’s friends.
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Digraphs

Friendships are (usually) symmetric. In many situations the
connections between nodes have a direction, and for those the
model of choice is a directed graph or digraph, where instead of
edges we have a set A of arcs. Formally, an edge a ∈ A is an
ordered pair (v ,w) of distinct nodes that the arc a connects.

In a directed graph, each node has two types of degrees, the
indegree ind(w) of a node w is the number of arcs that target v
and the outdegree out(v) of a node v is the number of arcs that
originate from v .
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Two examples of digraphs

For example, in digraph (a) node 4 has outdegree 1 and indegree 2.
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Networks

Let us call a mathematical structure a network if it is either a
graph or a digraph. The edges or arcs will be collectively referred
to as links. Here is a small sample of real-world structures that
can be modeled as networks:

Friendships between people (graph)

Sexual contacts between people (graph)

The World Wide Web (digraph, with arc (v ,w) signifying that
there is a hotlink to page w at page v)

Neuronal networks, aka brains (digraph, with arc (v ,w)
signifying a synaptic connection)

Transportation networks (usually graphs)
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Some common features of these networks

The number of nodes is very large (billions of people and web
pages, about a trillion neurons in the human brain).

The network keeps changing over time.

The connectivity (the set of links) at any one time cannot be
fully known.

However, we can get some idea about the network by probing
the connectivity of a subset of its nodes.

In particular, we can get usually get reasonably good
estimates about the degree distribution in these networks,
that is, of the proportion Pk of nodes that have degree k,
where k is a nonnegative integer.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Random Networks



Some challenges in collecting data on networks

Suppose you want to empirically study the degree distribution in
the friendship network and the network of sexual contacts.
Consider the following questions. Which ones have clear-cut
answers? For which ones should you expect an honest answer?

Would you feel comfortable telling us how many friends you
have?

How many friends do you have?

Who, exactly, counts as a friend?

So, how many friends do you have?

Who, exactly, counts as a sex partner?

Do you remember the total number of your sex partners?

So, how many persons did you ever have sex with?
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Some common features of these networks

The number of nodes is very large (billions of people and web
pages, about a trillion neurons in the human brain).

The network keeps changing over time.

The connectivity (the set of links) at any one time cannot be
fully known.

We may get some idea about properties of the network, in
particular about its degree distribution, by probing the
connectivity of a subset of its nodes.

In view of these uncertainties it makes sense to study random
networks that satisfy certain structural assumptions, in
particular, assumptions about the degree distribution. Since there
usually is some randomness in the process of making connections
between the nodes of networks of interest, one may hope that the
mathematical conclusions carry over to the real networks.
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The expected number of your friends

Assume that the friendship network is a random graph with a
fixed set V of nodes. Then both d(v) (the number of v ’s friends)
and d1(v) (the mean of d(w) for v ’s friends) are random variables.

For each nonnegative integer k let pk denote the probability that a
randomly chosen v has exactly k friends.

Then the mean value of d(v) is equal to

µ = E (d(v)) =
∑
k

kpk .
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The expected number of friends of your friends

To calculate the expected value of d1(v), let us pick v randomly
and let w be a randomly chosen friend of v .
As long as friendships are being formed sufficiently randomly, the
probability of w being chosen in this way is equal to kpk

µ , where k
is the degree of w . Thus

E (d1(v)) =
1

µ

∑
k

k2pk ==
E ((d(v)2)

µ
=

Var(d(v)) + µ2

µ
.

The right-hand side of the above is larger than µ as long as
Var(d(v)) > 0.

That is, as long as there is any variability in the degrees of
individual nodes, we will have

E (d1(v)) > E (d(v)).
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But wait a minute ...

How can the above argument possibly be true?
What about a situation when each person has either exactly one
friend (is a loner) or exactly 100 friends (is gregarious) and loners
befriend only other loners? Then clearly d(v) = d1(v) for all v and
the above result fails, although there is variability in the degrees.

A network like this is called completely assortative.

Recall that we assumed that friendships are being formed
sufficiently randomly, which in this case means that there is no
dependence between d(v)and d(w) if we know the {v ,w} forms
an edge.

This brings us to a more general question:

What is a random network anyway?
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Erdős-Rényi networks

Of course mathematically treating a network as “random” requires
specifying a probability distribution, at least implicitly, on the class
of all networks. The easiest approach is the following:

Fix the set V of nodes of size |V | = n.

Fix a probability p.

Include each potential link (edge {v ,w} or arc (v ,w)) in the
network with probability p, independently for different links.

This construction implicitly defines the class of Erdős-Rényi
networks.
It is easy to see that this construction gives networks with mean
degree (indegree, outdegree) p(n − 1) ≈ pn. The standard
deviation of the degrees in these networks is of order

√
n, which

implies that for the vast majority of nodes v ,w we should expect
that d(v)

d(w) ≈ 1. This, however, is not what we observe in most
real-world networks of interest.
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Scale-free networks

Empirical studies show that many large networks of interest have
degree distributions that roughly follow a power law with
pk = αk−γ for some α, γ > 0.

Such networks are called scale-free networks. Most nodes form
very few links, but a few nodes, the so-called hubs, have a huge
number of links.
Think of all the hotlinks pointing to YouTube vs. the ones pointing
to my own homepage.

As we have seen, Erdős-Rényi networks are not expected to be
scale-free. How can one randomly generate networks whose degree
distributions obey a power law?
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The preferential attachment model

One possibility is the following.

Grow the network by adding one node at a time, by adding a
new node vn to the current network Nn.

Let the probability that vn gets linked to w ∈ Nn be equal
to f (n, d(w)), where f increases in its second argument d(w).

It can be shown that this procedure will,for suitably chosen f , give
networks with an expected power law distribution of the degrees.

Note that in this scheme already highly connected nodes attract
more new links. This has been called “the rich get richer
phenomenon.”

It seems to be the way in which the www and friendship networks
are evolving.
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Dynamical systems on networks

Nodes in a network often can exhibit distinct states that change
over time. The change of the state of the entire network over time
is called network dynamics.

Nodes in transportation networks can be congested at times.

Neurons can fire or be at rest.

People can be sick or healthy.

Note that in all of the above examples changes in the state of a
node occur in response to interactions along the links of an
underlying network.

How does the network connectivity influence the network
dynamics?
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Example: A model of certain brain structures

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

One can build a simple model of neuronal networks based on
these facts.
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A model of neuronal network dynamics
Ahn S, Smith BH, Borisyuk A, Terman D, Physica D, 2010

A directed graph D and integers n (size of the network), pi

(refractory period), thi (firing threshold).

A state ~s(t) at the discrete time t is a vector:
~s(t) = (s1(t), . . . , sn(t)) where si (t) ∈ {0, 1, . . . , pi} for each i .
The state si (t) = 0 means neuron i fires at time t.

Dynamics on the discrete network N =< D, ~p, ~th >:

If si (t) < pi , then si (t + 1) = si (t) + 1.

If si (t) = pi , and there exists at least thi neurons j with
sj(k) = 0 and < j , i > ∈ AD , then si (t + 1) = 0.

If si (t) = pi and there do not exist thi neurons j with
sj(t) = 0 and < j , i > ∈ AD , then si (t + 1) = pi .
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An Example

Assume that refractory period= 1 and threshold= 1.
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An Example

Assume that refractory period= 1 and threshold= 1.
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An Example

Assume that refractory period= 1 and threshold= 1.
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Two phase transitions by Just W, Ahn S, Terman D, Physica D. 2008

What happens if D is an Erdős-Rényi random digraph with n
nodes such that each potential arc is included with
probability ρ(n)?

Theorem

1 A first phase transition occurs at ρ(n) ∼ ln n
n : Above this

threshold, in a generic trajectory all nodes will always fire as
soon as they reach the end of their refractory period.

2 A second phase transition occurs at ρ(n) ∼ c
n : Above this

threshold, in a generic trajectory most nodes will always fire
as soon as they reach the end of their refractory period.
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Results of the simulations Just W, Ahn S, Terman D, Physica D. 2008

How does a “phase transition” look like?
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Some directions for further explorations

Another phase transition was detected for ρ(n) ∼ 1
n . Together

with S. Ahn and A. Borisyuk we are currently exploring what
goes on in this (most interesting) range of connectivities.

What happens for random digraphs other than Erdős-Rényi
random digraphs (e.g., the ones obtained from the preferential
attachment model)?

The book chapter “Neuronal Networks: A Discrete Model,”
Just W, Ahn S, Terman D; to appear in Mathematical
Concepts and Methods in Modern Biology, Robeva R and
Hodge T eds., Elsevier, January 2013

includes eight research projects that gradually lead students
from relatively easy exercises to unsolved open problems. Most
of these are at a level that is accessible to undergraduates.
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Disease dynamics

Let us consider a different problem of applied mathematics:
Modeling the spread of infectious diseases.

One basic model is the so-called SIR model. In this model, the
population is partitioned into three classes:

S comprises all individuals that are susceptible to infection.

I comprises all individuals that are infectious.

R comprises all individuals that are removed.

In this model one assumes that removal occurs by recovery from
the disease or by death and confers permanent immunity to
reinfection.
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Differential equations for the SIR model

dS

dt
= −βSI ,

dI

dt
= βSI − γI ,

dS

dt
= γI .

The model predicts that if a small number of infected individuals is
introduced into a susceptible population, then

1 either the disease will quickly die out with a negligible
proportion of individuals becoming infected,

2 or it will become an epidemic and die out only after a fixed
fraction of the population has become infected and been
removed.

Which property makes the difference between these two
scenarios?
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The parameter R0

The basic reproductive ratio R0 is defined as

“the average number of secondary cases arising from an average
primary case in an entirely susceptible population.”

Theorem

If R0 < 1, the disease will quickly die out, if R0 > 1, an epidemic
will result.

Proof: Suppose that k infected individuals are introduced into and
otherwise entirely susceptible population of n individuals. If k � n
and T is the average time an individual stays infectious, then for
small enough m, after time mT we will have

E (|I |) ≈ kRm
0 .
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Contact networks and disease dynamics

Notice that in reality, an infectious disease is usually spread during
a contact between an infectious and a susceptible individual.

Thus the actual spread of a disease will be influenced by the
structure of the relevant contact network (e.g. sexual partners,
friends, co-workers, commuters), with a given contact resulting in
a transmission with a certain probability.

The proof I just gave you makes a lot of hidden assumptions; in
particular, it assumes that the contact network is not assortative
by degree. This is not a realistic assumption for most actual
contact networks.

In particular, for the same value of R0, which was defined in terms
of averages, in a scale-free network that is somewhat assortative by
degree, an epidemic might result if the initially infected individuals
are hubs, while the disease may quickly die out if the initially
infected individuals have relatively few contacts.
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An exciting area of research

This leads to a more general questions:

Which properties of the underlying contact network
determine the spread of an infectious disease?

Given our knowledge about the contact network, how should
interventions be targeted so that they will most effectively
prevent epidemics?

In collaboration with Dr. Grijalva from the College of Osteopatic
Medicine and my Ph.D. student Bismark Oduro we are
investigating this type of questions for Chagas’ disease, which is
endemic in South and Central America.
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A current epidemic

Over the last decade or so, the average researcher in the area of
large networks and their dynamics has infected an average of
R0 > 1 susceptible colleagues or students with this type of interest.
The number of researchers working on this topic has grown
exponentially and we have an epidemic. Should you worry?

Symptoms include:

A state of heightened excitement about one’s research that
can lead to sleep deprivation.

Increased susceptibility to authorship in prestigious journals.

Increased risk of exposure to funding agencies such as NIH.

Increased risk of contamination by genuine real-world
applications.

Increased exposure to the lure of nonacademic employers.

So far, not many cases of full recovery have been observed.
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