
Mathematical models of triatomine reinfestation:
What can we learn from them?

Winfried Just
Department of Mathematics, Ohio University

Bismark Oduro
Department of Mathematics

California University of Pennsylvania

December 13, 2018
PUCE, Quito, Ecuador

Winfried Just What can we learn from mathematical models



What are we trying to do?

We want to use mathematical models for answering specific
biological questions.

The questions considered in this talk will focus on insecticide
spraying as a control measures for infestation of housing units
by triatomines.

Our models will ignore the actual transmission of Chagas
disease by these insect vectors.
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Mathematical models

Mathematical models are greatly simplified versions of reality.
They are built by selecting certain aspects of the real world
that seem most relevant to answering a particular question.

This often allows us to predict what would happen in the real
world if one makes certain choices; for example, choices of
how to implement certain control measures.

One can then compare the predicted outcomes and implement
the most effective course of action.
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Model tractability vs. biological realism

There is a tradeoff between making a model simpler and more
tractable and making it more realistic but more complicated.

Simpler, more tractable models tend to make it easier to
derive predictions and gain important insights.

They may occasionally give wrong predictions though if they
ignore some important aspects of the real-world situation.

One can sometimes increase confidence in the predictions of
simple models by showing that their predictions remain robust
under inclusion of more realistic details.

Complete validation of the predictions of mathematical
models requires experimental verification.
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Ingredients of our basic model of insecticide control

I = I (t) is the number of infested units,

m is the total number of housing units,

S = S(t) is the number of susceptible units,

R = R(t) is the number of recently treated units that are
temporarily resistant to (re)-infestation,

w is the rate at which temporarily resistant units become
susceptible again as the effect of the insecticide wears off,

β is the rate of house-to-house infestation,

c is the rate of infestation from sylvatic areas.
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Some questions about insecticide control

WJ: Here is a list of my most important ones:

Question 1: Is it possible to permanently eradicate triatomines in
a given community with insecticide spraying?
If so, how aggressively do we need to spray to achieve this goal?

Question 2: Is it more cost-effective in the long run to spray only
infested units, or more cost-effective to spray all units?

Question 3: Is it more cost-effective in the long run to spray very
aggressively with higher initial cost or less aggressively with a cost
that stays fixed at all times?

Question 4: Is it more cost-effective to spray at fixed time
intervals, or to spray as soon as infestation is detected?
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Ingredients of our basic model of insecticide control

I = I (t) is the number of infested units,

m is the total number of housing units,

S = S(t) is the number of susceptible units,

R = R(t) is the number of recently treated units that are
temporarily resistant to (re)-infestation,

w is the rate at which temporarily resistant units become
susceptible again as the effect of the insecticide wears off,

β is the rate of house-to-house infestation,

c is the rate of infestation from sylvatic areas,

time t can take any real values,

the spraying rate r is our control parameter.
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Schematic representation of our basic model

Figure: β—rate of house-to-house infestation, c—rate of infestation
from sylavtic areas, w—rate at which insecticide decays, r—insecticide
spraying rate. Only infested units get treated in this model.
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The basic model

In our basic model, the variables change according to:

dS

dt
= −βIS − cS + wR

dI

dt
= βIS + cS − rI

dR

dt
= −wR

w—rate at which insecticide decays,

β—rate of house-to-house infestation,

c—rate of infestation from sylavtic areas,

r—insecticide spraying rate.
This is our control parameter.

In the basic model, only infested units get treated.
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Solutions of the ODEs and equilibria

The model is a system of three ordinary differential equations
(ODEs).

The solutions or trajectories of the systems are the possible
ways in which the three variables S(t), I (t), R(t) could
change over time.

Equilibria (S∗, I ∗,R∗) are solutions where these variables
remain fixed over time so that we have
(S(t), I (t),R(t)) = (S∗, I ∗,R∗) at all times t.

An equilibrium is infestation-free if I ∗ = 0 and endemic if
I ∗ > 0.

A given equilibrium can be approached over time only when it
is asymptotically stable.
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Theorems on the equilibria of the basic model

When c = 0, the model predicts the following:

When r ≥ βm, then the infestation-free equilibrium
IFE = (S∗, I ∗,R∗) = (m, 0, 0) is the only biologically feasible
equilibrium. It is asymptotically stable.

When r < βm, then both the IFE and an endemic
equilibrium EE exist. All trajectories that start with infested
units asymptotically approach the EE .

When c > 0, the model predicts the following:

There exists a unique biologically feasible equilibrium EE .
It is endemic and asymptotically stable.

Without migration of triatomines from sylvatic areas (when c = 0),
eradication will be achieved with sufficiently high spraying rates.
When migration of triatomines from sylvatic areas does occur
(c > 0), insecticide treatment alone will not achieve eradication.
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How about cost?

In the long run the system will be very near an equilibrium with
infestation level I ∗.

If we spray only infested units, then this cost can be expressed as

C (r) = r I ∗(r).

If we spray all units, then this cost can be expressed as

Call(r) = r m.

When we want to keep the endemic equilibrium level of infestation
level at I ∗ with spraying all units, we only need a smaller spraying
rate r− < r than for spraying only infested units.

But our theorem implies that we still have

C (r) = r I ∗ < r−m = Call(r
−).
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A dual-rate effect

Let’s assume we have a certain budget that allows us to only
maintain an equilibrium level of infestation I ∗ that will keep the
long-term cost C (r) = r I ∗ within budget.

When β is sufficiently large relative to c , then a dual-rate effect
occurs and there are two different spraying rates r1 > r2 that give
different equilibrium levels I ∗(r1) < I ∗(r2) of endemic infestation,

while C (r1) = r1 I
∗(r1) = r2 I

∗(r2) = C (r2).

It would then be more effective in the long run to spray at the
higher rate r1, as long as it is feasible to pay a higher cost over an
initial period.
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The dual-rate effect is fairly robust

The dual-rate effect also occurs:

In a model that accounts for the possibility that insecticide
treatment is not always 100% successful.

In a model that accounts for heterogeneities in housing units,
such as variable distance from each other and to sylvatic
areas, how well they are constructed, or whether the owner is
reluctant to allow insecticide treatment.

The latter model suggests that reluctance to allow spraying
has a larger potentially detrimental effect than other types of
heterogeneities.

What other possible extensions of our basic model would you
suggest?
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