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What processes are we modeling?

We are interested in diseases that are triggered when infectious
agents such as viruses or bacteria (called microparasites) enter the
organism of a host (human, animal, plant).

We are not interested here in the actual changes that the disease
causes in the organism of the host, or how the infectious agents
multiply within the host. We only care about how the disease
spreads between hosts of a given population.

In this lecture we will focus on diseases whose transmission requires
direct contact (of a certain type) between hosts, as opposed to
diseases that require a third type of organisms, called vectors for
transmission between hosts (mosquitoes in the case of malaria), or
diseases where the infectious agents are taken up from the shared
environment of the hosts (drinking water in the case of cholera).
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Which questions are we trying to answer?

If some disease agents are introduced into a population of
hosts that have not previously been exposed to the disease,
will an epidemic result? That is, should we expect that a
significant fraction of hosts in the population will eventually
get infected?

If an epidemic does result, what proportion of hosts will be
infected? The proportion of hosts that will be infected at
some (not necessarily the same) time during the epidemic is
called the final size (of the epidemic).

What control measures are most effective in either preventing
an epidemic or reducing the final size as much as possible?

Possible control measures include vaccination, quarantine,
culling (for animal and plant diseases), or behavior
modifications (for human diseases).
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When is a mathematical model good (enough)?

Our goal is to construct mathematical models that give us correct
answers to the questions on the previous slide. For that, we need
the model to:

Give us answers in the first place. Thus the model needs to be
simple enough to be tractable either by mathematical analysis
or computer simulations.

Be sufficiently realistic. It needs to take into account
sufficiently many biological details that influence the dynamics
so as to make reasonably correct predictions.

Be based on data that we actually can collect.

This may be too much to ask for. In practice, we may not know
whether a given model is sufficiently realistic. But it is sometimes
possible to study the mathematical problem of how more detailed,
or finer-grained models relate to simplified coarser-grained models.
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What happens to a host during a disease?

Since we only aim at modeling the dynamics between hosts, we
only make the following assumptions about the disease that gets
transmitted to host number i at time T i

E , which stands for the
time of exposure:

All (potential) hosts start out being susceptible to the disease
(at times t < T i

E ).
At all times T i

E ≤ t < T i
I the host will not (yet) be able to

infect others.
At all times t with T i

I ≤ t < T i
R ≤ ∞ the host will be

infectious, that is, will transmit the disease with positive
probability during contacts with susceptible hosts.
At all times t ≥ T i

R the host will neither be infectious nor
susceptible.

We are not assuming that T i
I marks the onset of symptoms of the

disease. Neither does T i
R always mark their cessation.

What happens at time T i
R? What kind of diseases do not

satisfy the above assumptions?
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The building blocks of disease models: compartments

Let’s summarize:

T i
E is time of exposure of host number i .

T i
I is time of onset of infectiousness of host number i .

T i
R is time of removal of host number i , which means the host

number i either dies from the disease or acquires permanent
immunity at time T i

R .

This suggests a partition of host population at time t into up to
four compartments:
S comprises all susceptible hosts (for which T i

E > t),
E comprises all exposed hosts with T i

E ≤ t < T i
I ),

I comprises all infectious hosts with T i
I ≤ t < T i

R , and
R comprises all removed hosts with T i

R ≤ t.
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SEIR-models

If all four compartments are considered, we get an SEIR-model.
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SIR-models

The simplifying assumption T i
E = T i

I eliminates the
E -compartment and we get an SIR-model.
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SI -models

If in addition T i
R =∞, then the R-compartment becomes

redundant and we get an SI -model.
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SIS-models

If we assume instead that at time T i
R hosts recover and become

susceptible to reinfection instead of acquiring immunity, then we
get an SIS-model.
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Four basic types of compartment models

S comprises all susceptible hosts (for which T i
E > t),

E comprises all exposed hosts with T i
E ≤ t < T i

I ),
I comprises all infectious hosts with T i

I ≤ t < T i
R , and

R comprises all removed hosts with T i
R ≤ t.

The times T i
E ,T

i
I ,T

i
R are specific to each host. Membership in the

compartments changes over time, and we can think of hosts
moving (but not in space!) from S to E to I to R.

The above is called an SEIR-model.
The simplifying assumption T i

E = T i
I eliminates the

E -compartment and gives an SIR-model.
If in addition T i

R =∞, then the R-compartment becomes
redundant and we get an SI -model.
If we assume instead that T i

E = T i
I and at time T i

R hosts
simply recover and become susceptible to reinfection instead
of acquiring immunity, then we get an SIS-model.

Can you think of other types of meaningful compartment
models?
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Are compartments good enough for our modeling?

Let us see whether we can translate our guiding questions into
compartmentalese.
Assume an SIR-model. Consider a population of N individuals, all
initially in S , and assume K of them become infected from outside
sources at time TE , where K � N. Now let the disease run its
course, and consider
F (K ,N) = limt→∞

N − #S(t)
N .

This limit is the final size, i.e. fraction of hosts that eventually
experience infection.

There is danger of an epidemic unless for fixed K we have
limN→∞ F (K ,N) = 0, which would mean that the disease will
affect only a negligible fraction of a large population.

How would vaccination at time Tv < TE of a fraction r of
hosts translate into compartmentalese?
As moving rN hosts into R at time Tv .
Compartmentalese seems to be a convenient language for us.
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Compartment-based ODE models

In the remainder of this talk we will ignore the
E -compartment and assume that the onset of infectiousness
coincides with the time of exposure, that is, T i

I = T i
E .

We will moreover assume that the population size N is fixed,
which ignores demographics, that is, births, deaths from
unrelated causes, immigration and emigration.

In the resulting ODE models the state of the population is
represented by three variables S , I , and R. These variables
could either represent the proportions of hosts in the
respective compartments, or their numbers.

In order to make the use of derivatives somewhat respectable,
one can think of population size being expressed in units of a
thousand or a million individuals so that at least some
fractional values of the variables make sense.
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Basic ODE versions of the SI -, SIR- and SIS-models

SI -model:

dS
dt = −βSI
dI
dt = βSI

SIS-model:

dS
dt = −βIS + αI
dI
dt = βIS − αI

SIR-model:

dS
dt = −βIS
dI
dt = βIS − αI
dR
dt = αI

The rate of infection β may or may not depend on N; the removal
rate α is always independent of N.
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What do the ODE models predict?

These ODE models are easy to study analytically.

If S(0), I (0) > 0, then the SI -model predicts that dI
dt > 0 at

all times and limt→∞ S(t) = 0, so the whole population will
eventually be infected.

Since S = N − I , the SIS-model simplifies to the logistic
growth model
dI
dt = βI (N − I )− αI = βI (N − α

β − I ),
which predicts both a disease-free equilibrium I ∗ = 0 and an
endemic equilibrium I ∗∗ = N − α

β .

The SIR-model allows both for predicting whether or not an
epidemic will occur and for predicting its final size if it does.

Would the final size be 1 if β is sufficiently large relative
to α?

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Disease Transmission Networks



But wait a minute ...

In our definition of final size we assumed that K out of N
individuals became initially infected and considered

F (K ,N) = limt→∞
N − #S(t)

N .

This limit exists all right in each repetition of the “experiment,”
but disease transmission is inherently a stochastic process and the
outcome will differ between repeated runs of the “experiment.”
To make the above definition of final size meaningful for a given
compartmental model we need to treat both sides as expected
values.

Even in this interpretation though, F (K ,N) will not in general be
determined by K and N alone. Which K individuals are initially
infected? Some socially withdrawn loners or highly gregarious ones
with a lot of social interactions?
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Advantages and disadvantages of compartment models

While compartment-based models, and ODE models in particular,
often make fairly realistic predictions, they have certain advantages
and certain disadvantages.

ODE models are relatively easy to study.

They involve few variables and require estimation of very few
parameters.

ODE models ignore the stochastic nature of disease
transmission.

Compartment models ignore heterogeneities between
individual hosts.

Compartment models are based on the often unrealistic
assumption of uniform mixing between individual hosts.

We will present a different type of models that can alleviate these
three disadvantages to some extent. But first let us illustrate the
nature of these problems with some examples.
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An example

Consider the spread of flu in a dorm with initially K = 1 student
infected. If we ignore heterogeneities, then we can estimate the
probability that an epidemic will result if the infected student is
“average.” Look at two scenarios:

Scenario 1: The infected student caught it in a bar.

Does the probability estimate based on the assumption of an
“average” student appear to apply in this scenario, or does it
appear to be too high or too low?

Scenario 2: The infected student caught it from the janitor.

Does the probability estimate based on the assumption of an
“average” student appear to apply in this scenario, or does it
appear to be too high or too low?
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How would an epidemic get started anyway? Example 1

A single infected host is introduced into a large population of
susceptibles.
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How would an epidemic get started anyway? Example 1

A new infection occurs.
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How would an epidemic get started anyway? Example 1

An infectious host is removed.
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How would an epidemic get started anyway? Example 1

An infectious host is removed.
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How would an epidemic get started anyway? Example 1

An infectious host is removed. The infection has died out.
No epidemic is observed in this example!
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The generations of the infection in Example 1

The average number of secondary infections per infectious host in
this example is 2+0+1+1+1+0

6 = 5
6 .
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How would an epidemic get started anyway? Example 2

Generations 0 and 1 might look as in Example 1.

Ohio University – Since 1804 Department of MathematicsWinfried Just at OU Disease Transmission Networks



How would an epidemic get started anyway? Example 2

A new infection occurs.
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How would an epidemic get started anyway? Example 2

An infectious host is removed.
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How would an epidemic get started anyway? Example 2

A new infection occurs.
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An infectious host is removed.
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Some generations of the infection in Example 2

The average number of secondary infections per infectious host in
generations 0 to 2 in this example is 2+2+0+2+3+2+3+1

8 = 15
8 .
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Does Example 2 indicate the start of an epidemic?

Most likely. From generation 0 to generation 3 the number of
infectious hosts has increased by a factor of 8, and one might
expect similar increases in subsequent generations.
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What makes the difference?

Definition

The expected number of secondary infections that will be caused
by a single infectious host that is introduced into a large and
entirely susceptible population is denoted by R0 and called the
basic reproductive ratio or basic reproductive number.

If R0 � N and if we assume uniform mixing of the population,
then practically contacts of infectious hosts during the first few
generations will be with susceptibles, and we might assume, as
long as k is sufficiently small, that R0 ≈ Rk , where Rk denotes the
mean number of secondary infections caused by a host in the k-th
generation.

Based on this argument, our best guess at R0 would be
R0 ≈ 5

6 < 1 in Example 1 and R0 ≈ 15
8 > 1 in Example 2.
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R0 makes the difference

Theorem

Assume uniform mixing and introduction of a single infected
individual into an entirely susceptible population. Assume,
moreover, that R0 does not depend on N.

If R0 < 1, then the expected number of individuals that eventually
become infected is bounded by a constant that depends only on R0

but not on N, and the disease is predicted to quickly die out.

If R0 > 1, then with probability > 0 an epidemic whose final size is
at least a fraction F (1,N) > 0 that depends only on R0 will occur.

“Proof”: Under the assumption the expected number of infecteds
in generation k satisfies E (gk) = R0R1 . . .Rk−1 ≤ Rk

0 , since
Rk ≤ R0. Thus E (limt→∞N − S(t)) ≤

∑∞
k=0 Rk

0 = 1
1−R0

.

If R0 > 1, then E (gk) ≈ Rk
0 for small k . More generally, Rk ≥ 1

until a significant fraction of susceptibles move to the I - or
R-compartments; an epidemic will occur with positive probability.
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Which factors might determine R0 and, more generally, the
disease dynamics?

The pattern of mixing between susceptibles and infectives. We
would like to know, for a given susceptible host and a given
time interval, the probability distribution of the number and
intensity of contacts that this host will have with infectives.

The probability that a given contact between a susceptible
and infective individual at time T i

I + t results in a “successful”
(from the point of view of the disease agent) transmission.

The distribution of times T i
I − T i

E during which a host resides
in E and T i

R − T i
I during which a host resides in I .

This may be too much to ask (the biologists) for.

Can you think of a population of real hosts for which it
would be possible to collect all the relevant data?

Even if we could have all the data, the resulting model would likely
be intractable. We need to make simplifying assumptions.
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We have seen extreme simplifications

The compartment-based ODE models that we saw earlier distill all
these features into two parameters α and β. This may be too
extreme. In particular:

ODE models ignore the stochastic nature of disease
transmission.

Compartment models ignore heterogeneities between
individual hosts.

Compartment models are based on the often unrealistic
assumption of uniform mixing between individual hosts.

Let us now try to develop a modeling framework that is capable of
incorporating as many potentially relevant details as possible.
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Stochastic process models: The basics

Examples 1 and 2 suggest that stuff happens at random times T i
I

of infection and T i
R of removal of host number i .

One can conceptualize disease dynamics as a stochastic process
that moves hosts around between the compartments.

Let us assume a fixed population that consists of hosts that are
represented by variables xi (t), where i ∈ {1, . . . , n}.

At any given time, a r.v. xi (t) can take values xi (t) ∈ {S , I ,R},
depending on the relation of t to T i

I and T i
R .

The state of the population at time t is the vector
~x(t) = (x1(t), . . . , xN(t)).
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What have we swept under the rug so far?

We ignore demographics, that is births, deaths from unrelated
causes, immigration and emigration.

We assumed T i
I = T i

E , that is, the time of exposure coincides
with the onset of infectiousness.

Successful transmission is a discrete event that either does or
does not happen during a given contact between an infective
and susceptible host. This ignores the possibility of multiple
below-threshold exposures adding up to an infection.

How distorting are these simplifying assumptions likely to be?

How could we incorporate the ignored details into our model?
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Independence of transition times

A state can change only by a variable xi changing its state from S
to I (at time T i

I ) or from I to R (at time T i
R).

We will assume that for any given state ~x(t) the relevant
variables T i

I and T i
R are all independent.

How realistic is this assumption?
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The Markov Property

We want our stochastic process model to be reasonably tractable;
the Markov Property might help. In other words, given a state ~x ,
we want the conditional distribution of future states ~x(t + ∆t)
given that ~x(t) = ~x to depend only on ~x and ∆t. One advantage
of the Markov Property is that it allows in some cases for
approximations of the model by autonomous ODEs.

The Markov Property implies that for a given state ~x each of the
relevant variables T i

I = T i
I (~x) and T i

R = T i
R(~x) is memoryless.

Thus T i
I will be exponentially distributed with parameter βi (~x) and

T i
R will be exponentially distributed with parameter αi (~x).
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Surprise: We have built a model!

Now assume you can determine values for the parameters αi (~x)
and βi (~x) for all possible states ~x of the population. Then the
above assumptions specify a stochastic model. Let’s show how to
simulate the process on the computer.

Choose an initial state ~x := ~x(0).
For all i with xi = I , randomly and independently choose
times T i

R at which host i will move out of the I -compartment
according to an exponential distribution with parameter αi (~x).
For all i with xi = S , randomly and independently choose
times T i

I at which host i would move into the I -compartment
if the state were to remain unchanged, according to an
exponential distribution with parameter βi (~x).
Determine the smallest time tnext at which the next “event”
(movement of a host to a different compartment) happens.
Set ~x := ~x(tnext) accordingly.
Repeat until stopping criterion.
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Advantages of the supermodel

We can think of the construction we have just presented as a
supermodel. It has a lot of attractive features:

It accounts for the stochastic nature of disease transmission.

It can be easily explored by simulations for moderately
large N.

It allows for heterogeneities between individual hosts (think of
αi (~x) as reflecting individual strength of the immune system).

It allows for exploring a variety of mixing patterns between
individual hosts (since βi (~x) in general may depend on ~x , that
is, on which other hosts are infectious at a given time).

Can you think of a scenario where we would want αi (~x) to
actually depend on ~x?
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A drawback of the Markov Property

The Markov Property may impose some plainly unrealistic features
though.

For example, the assumption that T i
R − T i

I is a memoryless r.v. is
blatantly wrong for most diseases. Recovery times show usually a
distribution that peaks at some modal value. For example, you are
much more likely to recover during day 7 of a bout of the flu than
during day 2, while an exponential distribution would predict the
opposite.

How can we modify the model so that the distribution of
recovery times becomes more realistic without sacrificing the
Markov Property of the process?
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Beware of supermodels!

Supermodels are pleasant to contemplate, but notoriously difficult
to work with.

Here are some problems ours suffers from:

There are just too many parameters. For an SIR-model we
would need 2N3N parameters βi (~x) and αi (~x).

Even for relatively small N it is plainly impossible to estimate
that many parameters from any kind of data.

The dimension N of the model is too large to study it
analytically.

Can we reduce the number of parameters that need to be
estimated from the data?
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Let’s make some tough choices

Let us ignore heterogeneities in individual immune response
and set αi (~x) to a fixed α for all i and ~x .
There is only one type of contact, and contacts last an instant
rather than having a duration. The probability of a
“successful” transmission of the disease during a given
contact between an infectious and a susceptible host is a fixed
parameter p.
The time τi ,j that host number i has to wait for the next
contact with host number j after time t is a memoryless r.v.
and thus has an exponential distribution with some
parameter λi ,j that does not depend on ~x .

This still allows us to explore a variety of mixing patterns and
reduces the number of parameters from a stratospheric 2N3N to a
still lofty but more reasonable

(N
2

)
+ 2.

What are some potential problems with these assumptions
and how could we address them?
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The new parameters specify a model

αi (~x) = α for a fixed α for all i and ~x .
The probability of a “successful” transmission of the disease
during a given contact between an infectious and a susceptible
host is a fixed parameter p.
The time τi ,j that host number i has to wait for the next
contact with host number j has an exponential distribution
with some parameter λi ,j .

We need to convince ourselves that the new parameters p and λi ,j
suffice to specify βi (~x) for all i and ~x .

For sufficiently small ∆t the probability that a successful
transmission from infectious host number j to susceptible host
number i occurs in the interval [0,∆t] can be approximated as
P(τi ,j ≤ ∆t)p ≈ pλi ,j∆t,
and the probability that susceptible host number i will become
infected during this time interval can be approximated as
P(T i

I (~x) < ∆t) ≈
∑
{j : x(j)=I} pλi ,j∆t = βi (~x)∆t.
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The uniform mixing assumption

The uniform mixing assumption translates into

λi ,j = λ for some fixed constant λ,

or, equivalently, into

βi (~x) = pλ#{j : x(j) = I} = β#{j : x(j) = I}
for the fixed constant β = pλ.

One can also interpret β#{j : x(j) = I} as the rate at which
susceptible host number i acquires an infection; it is called the
force of infection.

For large N, this allows us to approximate our stochastic process
models by the ODE models that we encountered earlier.
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Basic ODE versions of the SI -, SIR- and SIS-models

SI -model:

dS
dt = −βSI
dI
dt = βSI

SIS-model:

dS
dt = −βIS + αI
dI
dt = βIS − αI

SIR-model:

dS
dt = −βIS
dI
dt = βIS − αI
dR
dt = αI
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The uniform mixing assumption

The uniform mixing assumption translates into

λi ,j = λ for some fixed constant λ,

or, equivalently, into

βi (~x) = pλ#{j : x(j) = I} = β#{j : x(j) = I}
for the fixed constant β = pλ.

We get a reduction to only two parameters.

But when would the the uniform mixing assumption be
realistic?

Mixing may be nearly uniform if hosts move around a lot relative
to the size of the habitat, encounter each other rarely, and there is
no social structure.

Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Disease Transmission Networks



How to model more realistic mixing patterns?

In populations with a well-defined social or territorial structure
though, some pairs of individuals will have contact relatively
frequently (think of co-workers or neighbors in human
populations), while other pairs of individuals will almost certainly
never encounter each other (think of your likelihood to ever meet
the Supreme Leader of North Korea).

We can approximate the latter situation by assuming the existence
of a contact network which determines whether it is even possible
that the disease can be transmitted between two given hosts.

The nature of the required contact, and thus the relevant contact
network, may depend on the particular disease. Think of the flu vs.
a computer virus vs. a sexually transmitted disease.
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Mathematical structures for modeling contact networks:
graphs

A graph is an ordered pair G = (V ,E ), where V denotes the set of
vertices, or nodes, and the set E of edges of G is a subset of the
set of unordered pairs of nodes.

A contact network can be modeled as a graph whose vertices are
the individual hosts in the population, and an edge between two
hosts signifies an above-threshold probability of a relevant contact
between these two hosts.

One can then make the simplifying assumption that disease
transmission can occur only between two hosts that are represented
by adjacent nodes, that is, endpoints of a common edge, and study
the possible or likely dynamics of the disease on the network.
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An example of a contact network
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Could Example 1 occur on this contact network?
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Could Example 2 occur on this contact network?
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Could Example 2 occur on this contact network?
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Could Example 2 occur on this contact network?
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Could Example 2 occur on this contact network?
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Example 2 could not occur on this contact network
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One last simplifying assumption

Let us assume that for some fixed constant λ we have λi ,j = λ
whenever {i , j} is an edge in the contact network, and λ = 0
otherwise.

This assumption strictly speaking does not reduce the number of
parameters, but it allows us to define stochastic process models
purely in terms two real parameters α and β and the contact
network, which is a discrete structure.
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Stochastic process models for disease transmission on
networks

Ingredients:

Specification of the type of model (SI , SIR, or SIS).

A graph G with N vertices that represents the contact
network.

A parameter α that represents the removal rate.

A parameter β = pλ that specifies the rate at which a given
susceptible host acquires infections from a given adjacent
infectious host.

The process will then be modeled as described above, with

βi (~x(t)) = β#{j : xj(t) = I & {i , j} ∈ E}.
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But how to model the network?

A major problem is that we usually have only very limited
knowledge of the actual contact network. There are basically two
ways of building mathematically meaningful models of the
underlying networks.

In some cases the network may have a very special structure
that can be determined from data.
Alternatively, we can assume that the network is randomly
drawn from a probability distribution with certain parameters.
The values of these parameters should be chosen in such a
way that they favor networks with properties that conform to
whatever data we have about the actual network.
Popular choices for the second alternative are Erdős-Renyi
random graphs or scale-free networks that can be randomly
generated according to the preferential attachment model. In
the hands-on part we will explore several types of random
graphs.
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What is to be gained from network models of disease
transmission?

While the kind of network models we defined here are more
realistic than compartment models, they still are based on a lot of
simplifying assumptions. But they can give us important insights:

They can make predictions about the probability of an
epidemic that are not available from ODE models.
They may point to features of the contact network that
significantly influence the outcome of an epidemic. This gives
some guidance about what kind of data we need to collect in
order to be able to make reasonably accurate predictions.
They may allow us to discern cases when a
compartment-based model is inadequate or, alternatively,
guide our choice of the parameters for compartment-based
models.
They can inform the design of effective control measures when
the uniform mixing assumption is inadequate.
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Exhibit A: the uniform mixing assumption revisited

The uniform mixing assumption corresponds to the case where G
is the complete graph that contains all possible edges.

Assume an SIR model. To estimate R0, consider a state ~x(0) with
exactly one infectious host, number j , and all other hosts being
susceptible.

Then the expected number of transmissions over a small time
interval of length ∆t from host j to a given host i is ≈ β∆t, thus
the expected overall number of secondary infections caused by
host j over this interval is ≈ β(N − 1)∆t.

This formula applies as long as the interval is contained in (0,T j
R).

Expected values add up, so if we partition (0,T j
R) into small

subintervals of length ∆t each, we can deduce that the expected
overall number of secondary infections caused by host j satisfies

R0 ≈ β(N − 1)∆t
E(T j

R)
∆t = β(N−1)

α .
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When is this approximation valid?

I haven’t been very clear about all the assumptions needed for this
approximation to be a good one.

We will explore in the hands-on session what extra
assumptions are needed here and why.
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Exhibit A: compare this with the ODE model

dS
dt = −βIS
dI
dt = βIS − αI = I (βS − α)
dR
dt = αI

If one infectious individual is introduced into an otherwise
susceptible population, then S = N − 1. For β < α

N−1 , the model
predicts a decrease in I ; for β > α

N−1 , an initially exponential
increase of this variable. Reasoning backwards from the theorem
about R0, we see that R0 = β(N−1)

α , the same as for the stochastic
process model. This assumes population size expressed by the
number of individuals; for units of, say, thousands of individuals we
get R0 ≈ βN

α . R0 it is often reported in these forms.

But the ODE model predicts that for R0 > 1 an epidemic will
always occur for this initial condition, while the stochastic nature
of transmission implies that this happens only with a positive
probability < 1.

The network model allows us to determine this probability.
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Exhibit B: When is R0 a good predictor?

The inequality R0 > 1 is supposed to predict a positive probability
of an epidemic, with initially exponential increase in the number of
infected hosts.

This theorem was based on the uniform mixing assumption.

When does this prediction fail?
If it fails, what may be a better predictor?

We will explore this issue with random networks and the following
two special networks.
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Special case 1: L×M rectangular grids

Think of a banana plantation where the disease agent can move
only by a distance of at most 1.
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Special case 2: Rectangular grids with diagonal edges

Think of a banana plantation where the disease agent can move
only by a distance of at most 1.5.
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Exhibit C: Trees

A tree is a connected graph with exactly one path between each
pair of nodes. The nodes with degree 1 are called leaves.

Think of a river system.
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Exhibit C: Protecting rivers

Think of a river system. An invasive species, for example,
freshwater mussels, may spread along the river. This seems
different from disease transmission, but think again:

The mussels would be the disease agents here.
The hosts would be branching points of the river system.
An SI -type network model seems appropriate.
The spread of mussels along river segments could be blocked
by physical barriers. This is mathematically equivalent to
behavior modification (think “unfriending”).
Alternatively, branching points could be protected by
introducing predators in large enclosures. This is
mathematically equivalent to immunization.
Either control measure is expensive.

Given a limited budget, where should we place the predators
or barriers?
We will explore various strategies with the help of random trees.
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