
Connectivity vs. Dynamics
in a Simple Model of Neuronal Networks

Winfried Just, Ohio University
David H. Terman, Ohio State University

Sungwoo Ahn1, Ohio State University

May 22, 2011

1Currently at Indiana University Purdue University Indianapolis
Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



Outline

Review of the models

Discrete dynamics for special connectivities

Discrete dynamics for random connectivities

Correspondence between ODE dynamics and discrete
dynamics

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



Some empirical observations

Recordings from certain neuronal tissues such as the olfactory bulb
of mammals or the antennal lobe of insects reveal the following
pattern: Time seems to be partitioned into episodes with
surprisingly sharp boundaries. During one episode, a group of
neurons fires, while other neurons are at rest. In the next episode, a
different group of neurons fires. Group membership may vary from
episode to episode, a phenomenon called “dynamic clustering.”

How can we mathematically explain this phenomenon?
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An ODE model of neuronal networks
from Terman D, Ahn S, Wang X, Just W, Physica D, 2008

Each excitatory (E -) cell satisfies

dvi
dt

= f (vi ,wi )− gEI

∑
s Ij (vi − v I

syn)

dwi

dt
= εg(vi ,wi )

dsi
dt

= α(1− si )H(vi − θE )− βsi .

Each inhibitory (I -) cell satisfies

dv I
i

dt
= f (v I

i ,w
I
i )− gIE

∑
sj(v I

i − vE
syn)− gII

∑
s Ij (v I

i − v I
syn)

dw I
i

dt
= εg(v I

i ,w
I
i )

dx I
i

dt
= εαx(1− x I

i )H(v I
i − θI )− εβxx I

i

ds Ii
dt

= αI (1− s Ii )H(x I
i − θx)− βI s Ii .

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



Some simulation results
Ahn S, Smith BH, Borisyuk A, Terman D, Physica D, 2010

Certain excitatory-exhibitory networks models based on these ODEs
reproduce the empirically observed pattern of dynamic clustering.

Can we build a simpler discrete model whose dynamics reliably
reflects the one of the underlying ODE model?
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Neuroscience for the rest of us

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

Let us build a simple model of neuronal networks based on
these facts.
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A discrete dynamical system model
Ahn S, Smith BH, Borisyuk A, Terman D, Physica D, 2010

A directed graph D = [VD ,AD ] and integers n (size of the
network), pi (refractory period), thi (firing threshold).

A state ~s(t) at the discrete time t is a vector:
~s(t) = [s1(t), . . . , sn(t)] where si (t) ∈ {0, 1, . . . , pi} for each i .
The state si (t) = 0 means neuron i fires at time t.

Dynamics on the discrete network N =< D, ~p, ~th >:

If si (t) < pi , then si (t + 1) = si (t) + 1.

If si (t) = pi , and there exists at least thi neurons j with
sj(k) = 0 and < j , i > ∈ AD , then si (t + 1) = 0.

If si (t) = pi and there do not exist thi neurons j with
sj(t) = 0 and < j , i > ∈ AD , then si (t + 1) = pi .
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Studying the discrete model

For a given discrete model N =< D, ~p, ~th > we may ask about the
(possible, maximal, average)

lengths of the attractors,

number of different attractors,

sizes of their basins of attraction,

lengths of transients

... .
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An Example

Assume that refractory period= 1 and threshold= 1.
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Even the discrete dynamics may be intractable

The problem of deciding for a given discrete model
N =< D, ~p, ~th > and a given state ~s whether ~s is transient or
persistent is NP-hard.

The problem of approximating within ε the proportion of all nodes
that eventually stop firing is also NP-hard.

For proofs of these and many similar results see
W. Just, Unpublished research notes, Fall 2006.
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Some special connectivities

Cyclic digraphs.

Cyclic digraphs with one shortcut.

Strongly connected digraphs: There is a directed path from
every node to every other node.

Regular digraphs.

...

What kind of dynamical properties are implied by these special
connectivities?
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Cyclic digraph on n nodes Sungwoo Ahn, Ph. D. Thesis 2010

Theorem

Let ~p = [p1, . . . , pn], ~th = [1, . . . , 1] >, and p∗ = max~p. Then for
cyclic digraphs D with n vertices the system N =< D, ~p, ~th >
satisfies:

The length of any attractor is a divisor of n.

The length of any transient is at most n + 2p∗ − 3.

The number of different attractors is equal to the number of
different necklaces consisting of n black or red beads where all
the red beads occur in blocks of length that is a multiple of
p∗ + 1. It is equal to

b n
p∗+1

c∑
k=1

 1

n − kp∗

∑
a∈{divisors of gcd(k,n−kp∗)}

φ(a)

(n−kp∗
a
k
a

)+ 1,

where φ is Euler’s phi function.
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Attractor lengths in strongly connected digraphs
Ahn, S and Just, W, submitted.

Theorem

Let D be a strongly connected digraph with n vertices that does
not have two disjoint directed cycles. Then the length of any
attractor in N =< D,~1,~1 > is bounded by n.

The proof is difficult even for the special case of a Hamiltonian
cycle with one shortcut (S. Ahn, Ph.D. Thesis).

The complete formulation and proof of the above theorem actually
show that strongly connected digraphs for which N =< D,~1,~1 >
has attractors of length > n must have a very special structure.
The smallest known example of a Hamiltonian such D has 26
vertices.
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Random connectivities

For given n, we randomly generate a digraph with n nodes by
including each possible arc < i , j > with probability ρ(n);
independently for all arcs (Erdős-Rényi random digraph).

We randomly generate many initial conditions.

We collect statistics on the proportion of initial states for
which the dynamics exhibits selected features.

How do these features depend on ρ(n)?

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



Some special objects

~s~p = [p1, . . . , pn] is the only steady state attractor.

A minimal attractor is one in which each neuron either never
fires or fires as soon as it reaches the end of its refractory
period.

A fully active attractor is one in which every neuron fires at
some time.

An autonomous set consists of neurons that fire as soon as
they reach the end of their refractory periods, regardless of
the dynamics of neurons outside of this set.
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Results of the simulations Just W, Ahn S, Terman D, Physica D. 2008
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Two phase transitions by Just W, Ahn S, Terman D, Physica D. 2008

Theorem

1 The first phase transition at ρ(n) ∼ ln n
n :

Above this threshold: a generic initial state belongs to a fully
active minimal attractor.
Below this threshold: a generic initial state will not belong to a
minimal attractor.

2 The second phase transition at ρ(n) ∼ c
n :

Above this threshold: the fraction of nodes that belong to the
largest autonomous set will rapidly approach one as ρ
increases.
Below this threshold: this fraction will rapidly dwindle to zero.

3 Both phase transitions also occur if the digraph is any
k = bρ(n)n c regular digraph.
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Directions for further research

See Alla Borysiuk’s talk.

Another phase transition was detected for ρ(n) ∼ 1
n . Explore

what goes on in this (most interesting) region of the
parameter space.

Explore these phenomena for random digraphs other than
Erdős-Rényi random digraphs (e.g., scale-free degree
distributions).

Explore these questions for related discrete models.
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But is the discrete model accurate?

Simulation results show a good correspondence between the
dynamics predicted by the discrete model and the underlying more
realistic ODE model. But can we rigorously prove such a
correspondence?
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An Architecture

I1, I3 I2, I4 I3, I5 I2, I4

E2, E4E3, E5E2, E4,
E3(ref)E1, E3

Excite Inhibit

E 1 → E 2,E 3

E 2 → E 3

E 3 → E 2,E 4

E 4 → E 5

E 5 → E 4

Assume: E-cells can excite one another

via interneurons.
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Reducing neuronal networks to discrete dynamics,
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Theorem

For the network architecture described above, if the intrinsic and
synaptic properties of the cells are chosen appropriately, then there
is an exact correspondence between the trajectories of the
continuous and discrete systems for any connectivity between the
excitatory and inhibitory cells.
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What, exactly, does ”exact correspondence” mean?

For simplicity assume ~p = ~1.

Partition the state space of E-cell number i into
complementary regions Fi (”firing”) and Ri (”resting”).

For individual trajectories time can be partitioned into
subsequent intervals of roughly equal lengths (”episodes”).

Except for slight fuzziness on the boundaries, throughout each
episode E-cell number i will reside either in Fi or in Ri .

The discrete model accurately predicts the movement
between Fi and Ri from one episode to the next for all E-cells
and all episodes.

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



What, exactly, does ”exact correspondence” mean?

For simplicity assume ~p = ~1.

Partition the state space of E-cell number i into
complementary regions Fi (”firing”) and Ri (”resting”).

For individual trajectories time can be partitioned into
subsequent intervals of roughly equal lengths (”episodes”).

Except for slight fuzziness on the boundaries, throughout each
episode E-cell number i will reside either in Fi or in Ri .

The discrete model accurately predicts the movement
between Fi and Ri from one episode to the next for all E-cells
and all episodes.

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



What, exactly, does ”exact correspondence” mean?

For simplicity assume ~p = ~1.

Partition the state space of E-cell number i into
complementary regions Fi (”firing”) and Ri (”resting”).

For individual trajectories time can be partitioned into
subsequent intervals of roughly equal lengths (”episodes”).

Except for slight fuzziness on the boundaries, throughout each
episode E-cell number i will reside either in Fi or in Ri .

The discrete model accurately predicts the movement
between Fi and Ri from one episode to the next for all E-cells
and all episodes.

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



What, exactly, does ”exact correspondence” mean?

For simplicity assume ~p = ~1.

Partition the state space of E-cell number i into
complementary regions Fi (”firing”) and Ri (”resting”).

For individual trajectories time can be partitioned into
subsequent intervals of roughly equal lengths (”episodes”).

Except for slight fuzziness on the boundaries, throughout each
episode E-cell number i will reside either in Fi or in Ri .

The discrete model accurately predicts the movement
between Fi and Ri from one episode to the next for all E-cells
and all episodes.

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



What, exactly, does ”exact correspondence” mean?

For simplicity assume ~p = ~1.

Partition the state space of E-cell number i into
complementary regions Fi (”firing”) and Ri (”resting”).

For individual trajectories time can be partitioned into
subsequent intervals of roughly equal lengths (”episodes”).

Except for slight fuzziness on the boundaries, throughout each
episode E-cell number i will reside either in Fi or in Ri .

The discrete model accurately predicts the movement
between Fi and Ri from one episode to the next for all E-cells
and all episodes.

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



What, exactly, does ”exact correspondence” mean?

For simplicity assume ~p = ~1.

Partition the state space of E-cell number i into
complementary regions Fi (”firing”) and Ri (”resting”).

For individual trajectories time can be partitioned into
subsequent intervals of roughly equal lengths (”episodes”).

Except for slight fuzziness on the boundaries, throughout each
episode E-cell number i will reside either in Fi or in Ri .

The discrete model accurately predicts the movement
between Fi and Ri from one episode to the next for all E-cells
and all episodes.

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks



The proof of the correspondence theorem

Is elaborate.

Separation of time scale allows to reduce the argument to the
limiting case of movement along the nullclines of the fast
variables.

Phase plane analysis reveals the dynamics of individual
neurons.

The slowest I-neuron in each episode acts as pacemaker.

Plus a lot more messy details.

The proof is robust under some noise.
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Open problems

For what other architectures of neuronal networks can one prove
such correspondence theorems?

More generally: Under which conditions does there exist an “exact
correspondence” between an ODE system and a Boolean system?

This last question is the current focus of my research (joint project
with Todd Young and a group of graduate and undergraduate
students at Ohio University).
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