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A problem from mathematical neuroscience

Recordings from certain neuronal tissues (of real organisms) reveal
the following pattern: Time seems to be partitioned into episodes
with surprisingly sharp boundaries. During one episode, a group of
neurons fires, while other neurons are at rest. In the next episode,
a different group of neurons fires. Group membership may vary
from episode to episode, a phenomenon called dynamic clustering.
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How dynamic clustering looks like
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How to model dynamic clustering

Time seems to be partitioned into episodes with surprisingly sharp
boundaries. During one episode, a group of neurons fires, while
other neurons are at rest. In the next episode, a different group of
neurons fires. Group membership may vary from episode to
episode.

Why? How can we mathematically explain this phenomenon?

Of course, something like this will occur in many discrete-time
dynamical systems, but this does not give an explanation as the
episodes are built right into the definition of time.

Does the phenomenon occur in biologically realistic ODE
models?
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An ODE model of neuronal networks
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008
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We have a plausible model, but ...

Let us call the model that we just described M.

The model M does predict dynamic clustering.

The architecture involves a layer of excitatory neurons and a
layer of inhibitory neurons that mediate the firing of the
excitatory neurons.

Individual neurons are modeled by the the Hodgkin-Huxley
Equations, which are nonlinear ODEs.

These are difficult to analyze mathematically even for single
neurons, let alone for large networks.

Can we study the dynamics of M by means of a simpler,
approximate model N?
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Mathematical neuroscience for the rest of us

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

Neurons are connected via synapses. Through a given
synapse, the presynaptic neuron may send firing input to the
postsynaptic neuron.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

Let us build a class of simple models N of neuronal networks based
on these facts.
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Discrete dynamical system models N =< D, ~p, ~th >

D = ([n],AD) is a digraph on [n] = {1, . . . , n},
~p = (p1, . . . , pn), where pi is the refractory period of neuron i ,
~th = (th1, . . . , thn), where thi is the firing threshold of neuron i .

A state ~s(t) at the discrete time t is a vector:
~s(t) = (s1(t), . . . , sn(t)) where si (t) ∈ {0, 1, . . . , pi} for each i .
The state si (t) = 0 means neuron i fires at time t.

Dynamics of N:

If si (t) < pi , then si (t + 1) = si (t) + 1.

If si (t) = pi , and there exists at least thi neurons j with
sj (k) = 0 and < j , i > ∈ AD , then si (t + 1) = 0.

If si (t) = pi and there do not exist thi neurons j with
sj (t) = 0 and < j , i > ∈ AD , then si (t + 1) = pi .

If pi = 1 for all i then N is a Boolean system.
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An example

Assume refractory periods ~p = ~1 and firing thresholds ~th = ~1.
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Reducing neuronal networks to discrete dynamics,
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Theorem

For each ODE model M of neuronal networks as described above,
if the intrinsic and synaptic properties of the cells are chosen
appropriately, the dynamics of M will exhibit dynamic clustering.
Moreover, there exists a discrete model N =< D, ~p, ~th > that
correctly predicts, for a large region U of the state space of M and
all times t, which neurons will fire during which episodes.

The theorem essentially tells us that as long as M is a biologically
sufficiently realistic model of a given neuronal network, then so is
the corresponding model N.

The discrete models N are much more tractable than the ODE
models M. In particular, they permit us to study the dependence
of the dynamics on the network connectivity D.
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Why do we want to study this question for random
connectivities?

Amazing fact: There exists a little roundworm, Caenorhabditis
elegans, with 302 neurons, for which each single synapse has been
mapped!

For higher organisms though, our knowledge of the actual neuronal
wiring is only very fragmentary. We may, however, have some
information about global network parameters such as the degree
distribution. For example, there are about 1012 neurons and 1015

synaptic connections in the human brain, which gives a mean
degree of about 1000 for the network.

The architecture of actual neuronal networks has been shaped by
evolution and to some extent by learning, both of which are
stochastic processes. Thus it is reasonable to assume that the
actual architecture exhibits features that are reasonably typical for
a relevant probability distribution on digraphs.
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Basics of network dynamics

The trajectory of initial state ~s(0) is the sequence
(~s(0),~s(1), . . . ,~s(t), . . . )

States that are visited infinitely often by the trajectory are
called persistent states. Since the sate space is finite, every
trajectory must eventually reach a persistent state. The set of
these persistent states is called the attractor of the trajectory.

Transient states are visited only once. Their sequence is an
initial segment of the trajectory, called its transient (part).

The vector ~p = (p1, . . . , pn) is the unique steady state of a
network N. The set {~p} is the only steady state attractor. All
other attractors, if such exist, are called periodic attractors.
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Examples of transients and periodic attractors
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The basic setup
Just W and Ahn S, in progress

Let π be a function that assigns to each positive integer n a
probability π(n).

Randomly draw an Erdős-Rényi digraph D on [n] where each
potential arc is included with probability π(n).

Fix 1 ≤ p∗ ≤ p∗ and 1 ≤ th∗ ≤ th∗.

Randomly draw ~p and ~th from the uniform distribution of all
n-dimensional vectors with p∗ ≤ pi ≤ p∗ and th∗ ≤ thi ≤ th∗

for all i ∈ [n].

Randomly draw an initial condition ~s(0) in the chosen
network.

Let α be the length of the attractor and let τ be the length of
the transient of the trajectory of ~s(0).

In the remainder of this talk we will for simplicity make the
standing assumption that p∗ = th∗ = 1.
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Scaling laws for α and τ

We are interested in how the medians and all fixed percentiles of α
and τ scale as n→∞.

Why percentiles?

If the means of α or τ do scale differently from the percentiles,
then this must be due to rare outliers. The majority of studies on
network dynamics in mathematical biology relies on simulations.
These are unlikely to detect extremely rare outliers. Thus
theoretical results on the scaling of fixed percentiles will in general
be better predictors of simulation results than theoretical results on
the means.
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Why are these scaling laws relevant?

Several of the neuronal tissues in which dynamic clustering has
been observed are part of olfactory systems. There is an ongoing
debate among neuroscientists whether odors are coded in the
attractors or in the transients of neuronal dynamics. The first
scenario requires sufficiently many different (long) attractors, the
second requires sufficiently long transients.

Classes of Boolean systems can be roughly categorized as those
exhibiting predominantly ordered dynamics and those exhibiting
predominantly chaotic dynamics. The former are characterized
(among other hallmarks) by relatively short transients and
attractors; the latter by relatively long ones. The difference
between “short” and “long” often corresponds to polynomial vs.
exponential scaling with system size n. The capability of the
system to perform complex computations appears to require that
its dynamics falls into the critical regime, right at the boundary
between order and chaos.
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Acyclic connectivities

Proposition

Assume D is acyclic. Then

(i) α = 1

(ii) τ + 1 does not exceed the maximal length γ of a directed path
in D.

Proof: If node i fires at time T > 0, then there must exist a
sequence of nodes (i = iT , iT−1, . . . , i0) with

sit (t) = 0 for all t ≤ T ,
< it , it+1 >∈ AD for all t < T .

If α > 1, we have such T with T ≥ n. If D is acyclic, this
sequence must contain pairwise distinct nodes. �

For π(n) = c
n with c < 1, this simple observation immediately

implies that at least some percentiles of α scale like 1, and the
same percentiles of τ scale like O(log n).
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The effect of one directed cycle

Proposition

Assume D is a directed cycle of length L. Then α is a divisor of L.

Let us call D supersimple if it is either acyclic or contains exactly
one directed cycle C and for every node j outside of C there exists
at most one directed path from j to C and at most one directed
path from C to j .

Lemma

Assume D is supersimple and contains a directed cycle of length L.
Then

(i) α is a divisor of L.

(ii) The percentiles of τ scale like Θ(γ).
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α and τ in terms of upstream components

If π(n) = c
n for c < 1, then with probability arbitrarily close to 1 as

n→∞, all upstream components of D will be supersimple.

The internal dynamics of the upstream component UC (i) of node i
will not be influenced by the remainder of the system.
Let αi , τi denote the length of the attractor and the transient in
the internal dynamics of UC (i). Then

α = lcm{αi : i ∈ [n]} and τ = max{τi : i ∈ [n]}.
These observations imply

Theorem

Assume π(n) = c
n with c < 1. Then

(i) Each fixed percentile of α scales like O(1).

(ii) Each fixed percentile of τ scales like Θ(log n).

Thus the subcritical case exhibits hallmarks of highly ordered
dynamics.
Ohio University – Since 1804 Department of Mathematics

Winfried Just at OU Transients and Attractors in Random Neuronal Networks



Approaching the critical window from below

Theorem

Assume π(n) = 1−n−β

n , where 0 < β < 1/4. Then with probability
arbitrarily close to 1 as n→∞
(i) Every upstream component of D will be supersimple.

(ii) γ, and hence τ , scales like O((log n)nβ).

(iii) γ, and hence τ , scales like Ω(nβ).

(iv) α ≤ e
√

n ln n+o(1) and thus scales subexponentially.

(v) α ≥ eΩ(log n log log n) and hence scales faster than any
polynomial function.

Thus we observe hallmarks of the critical regime for the dynamics.
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The proof of point (iv)

Theorem

Assume π(n) = 1−n−β

n , where 0 < β < 1/4. Then with probability
arbitrarily close to 1 as n→∞
(iv) α ≤ e

√
n ln n+o(1) and thus scales subexponentially.

Proof: Let {L1, . . . , Lr} denote the set of all lengths of directed
cycles in D. If every upstream component of D is supersimple, then

α ≤ lcm{L1, . . . , Lr},

and, moreover, the directed cycles of D are pairwise disjoint.

It follows that α ≤ g(n), where g(n) ∼ e
√

n ln n+o(1) is Landau’s
function. �
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The proof of (v)

Theorem

Assume π(n) = 1−n−β

n , where 0 < β < 1/4. Then with probability
arbitrarily close to 1 as n→∞
(v) α ≥ eΩ(log n log log n) and hence scales faster than any
polynomial function.

Outline of the Proof: First we show that for every given
probability q < 1 and positive integer k there exist a positive
integer K = K (q, k) and a positive real κ such that for all
sufficiently large n, with probability > q, the digraph D will
contain a set of more than k

κ directed cycles of lengths Li = Ki Pi ,
where Ki < K < nκ < Pi and the numbers Pi are distinct primes.
Such a set can be obtained from Euler’s result on reciprocals of
primes by the second moment method.

Then
∏

Pi > nk and this implies lcm{L1, . . . , Lr} > nk ,
but so far we are only guaranteed that α ≤ lcm{L1, . . . , Lr}.
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The proof of (v), continued

Note that αi in the upstream component of the cycle of length
Ki Pi either is a multiple of Pi , or satisfies αi ≤ Ki .

To complete the proof, we showed that the probability of the
inequality αi ≤ Ki becomes negligible for large n.

This seems intuitively obvious, as Li = Ki Pi with Ki < K � Pi

implies that there are vastly more attractors of length ≥ Pi than
attractors of length ≤ Ki in this upstream component.

But the distribution of the sizes of their basins of attraction
(number of initial conditions from which the attractor is reached)
is not uniform. This poses some technical difficulties that required
a more elaborate argument. �
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What happens right inside the critical window?

One would conjecture that for π(n) = 1
n both α and τ scale even

faster. Simulations studies indicate as much.

However, our arguments so far relied on having almost perfect
control over the dynamics, as both in the subcritical case and at
the lower end of the critical window the important structures,
directed cycles and long directed paths, are neatly segregated into
separate upstream components. Higher up in the critical window
we lose all such control.

Thus it seems very challenging to develop good tools for exploring
the dynamics of our system deep inside the critical window.
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What happens above the critical window?

When π(n) = c
n for some constant c > 1, we regain a certain

amount of control.

In this case we can assume that there exists a giant strongly
connected component GC . If we remove it together with all nodes
downstream of it, the remaining digraph will exhibit the same
features as in the subcritical case: small and supersimple upstream
components.

This essentially leaves us with investigating what happens inside
the giant component, and it seems that together with the giant
component there appears a new feature that will simplify the
dynamics.

Definition

A node i is eventually minimally cycling if there are only finitely
many times t with si (t) = si (t + 1) = pi .
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The supercritical case: The first minimally cycling node in
the giant component

Proposition

There exists 1 ≤ ccrit ≤ 2 such that for π(n) = c
n with c > ccrit ,

with probability approaching 1 as n→∞,

(i) The giant strongly connected component will contain an
eventually minimally cycling node.

(ii) The smallest time tfirst at which some node in the giant
strongly connected component becomes minimally cycling is
bounded by a constant that depends on c but not on n.

Proof: We show that c = 2 works here.

If D contains a directed cycle C of even length such that the initial
state has alternating zeros and ones along this cycle, then each
node in C will be (eventually) minimally cycling, starting from
time t = 0.
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The supercritical case: The first minimally cycling node in
the giant component

Proposition

If π(n) = c
n with c > 2, with probability approaching 1 as n→∞,

the giant strongly connected component will contain a minimally
cycling node.

Proof (continued): For any given even L, the expected number

of such directed cycles of length L approaches cL

L2L−1 as n→∞.

A standard second-moment argument now shows that for any
given constant A, with probability approaching 1 as n→∞, the
digraph D will contain such directed cycles of length L > A.

Since the probability that the part of D outside of the giant
strongly connected component will contain directed cycles of
length ≥ A becomes arbitrarily small for sufficiently large A, the
result follows. �
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The supercritical case: All nodes in the giant component
are minimally cycling

Lemma

Suppose node j is eventually minimally cycling.

(i) If node i is such that there exists a directed path in D from j
to i , then i is also eventually minimally cycling.

(ii) Let τall denote the time it takes from the moment τfirst when
the first node of the giant strongly connected component of D
becomes minimally cycling until all nodes in DC , the set of nodes
downstream of the giant strongly connected component become
eventually minimally cycling.
Then all percentiles of τall scale like O(2diam(DC)), where
diam(DC ) denotes the maximum length of the shortest directed
path from j ∈ GC to i ∈ DC .
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Attractors and transients in the supercritical case

For c > ccrit we get the following picture:∏
αi , taken over i that is not downstream of of the giant

strongly connected component, scales like a constant.

All nodes that are downstream of the giant strongly connected
component are minimally cycling in the attractor, which adds
a factor of most 2 to α.

max τi , taken over i that are not downstream of of the giant
strongly connected component, scales like Θ(log n).

For i that are downstream of of the giant strongly connected
component, max τi = τfirst + τall , which scales like O(nk ) for
some k = k(c).

Thus, as in the supercritical case, all percentiles of α scale like a
constant, and all percentiles of τ scale polynomially and
like Ω(log n).
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Open problems

Problem 1: Find the exact scaling law for the length τ of the
transient in the supercritical case, or at least narrow the gap
between Ω(log n) and O(nk(c)).

Problem 2: Assume π(n) = 1−n−β

n , where 0 < β < 1/4. Find the
exact scaling law for the length τ of the transient.

At this time we know that it is between Ω(nβ) and O((log n)nβ).

We also know that in this case the scaling law must be the same
as the one for the maximum length of a directed path in D.
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Open problems, continued

Problem 3: Assume π(n) = 1−n−β

n , where 0 < β < 1/4. Find the
exact scaling law for the length α of the attractor.

At this time we know that it is between eΩ(log n log log n) and
Landau’s function g(n) ∼ e

√
n ln n+o(1).

Problem 4: Does there exist, for any n, a network < D,~1,~1 >
on [n] that contains any attractor of length α > g(n)?

This question is entirely deterministic, but it is conceivable that it
is easier to show the existence of such examples probabilistically
rather than by an explicit construction.
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Open problems, continued

Problem 5: Does there exist π(n) such that τ(n) scales faster
than any polynomial?

At this time we don’t even know whether there exists π(n) where
τ(n) scales like Ω(n).

We have deterministic examples for which τ(n) roughly scales like

Landau’s function g(n) ∼ e
√

n ln n+o(1).

If there exists a sequence of probabilities that gives a positive
answer, it must be in the critical window
1−n−1/4+o(1)

n ≤ π(n) ≤ ccrit +o(1)
n .

Problem 6: More generally, explore what happens for π(n) in the
critical window.

This seems quite challenging and appears to require new methods.
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Open problems, continued

Problem 7: Investigate α and τ for the case when th∗ > 1, that
is, when all firing thresholds exceed 1.

We have some rudimentary results, but a full characterization will
require new methods. In particular, if UC (i) is simple, then
αi = 1. In other words, the existence of periodic attractors requires
more complicated structures inside D than just directed cycles.

Problem 8: Investigate the behavior of α and τ for other types of
random connectivities.

Empirical results indicate that the degree distributions in actual
neuronal networks may be closer to scale-free than to normal.
Thus results on Erdős-Rényi random connectivities may not be
directly applicable to neuroscience.

But we had to start our investigations somewhere.
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Open problems, continued

Problem 9: Investigate how the Hamming distance
H(~s(t),~s ∗(t)) = #{i : si (t) 6= s∗i (t)} evolves.

If the Hamming distances between a randomly chosen initial
condition ~s(0) and a small perturbation ~s ∗(0) of it tends to
significantly increase, then we have decorrelation.

Decorrelation indicates sensitive dependence on initial conditions
and is a chaos-like property. Neuroscientists believe that some form
of decorrelation is needed if odors are to be coded in transients.

Problem 10: Try to generalize our results to systems with other
types of rules.

For example, the result that α = 1 for acyclic D generalizes to any
type of network dynamics where the updating rules do not allow
sustained oscillations of a node under constant external input.
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Open problems, continued

Back to our paper.

Problem 11: What is ccrit , really?

We implicitly defined ccrit as the minimum value such that for
every constant c > ccrit and π(n) = c

n , with probability
approaching 1 as n→∞, an eventually minimally cycling node will
appear in the giant component at time τfirst , where τfirst is
supposed to scale like a constant.

We showed that 1 ≤ ccrit ≤ 2.

We conjecture that ccrit = 1.
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Simulation results indicate as much

Figure: Lengths of the attractors and the transients for ~p = ~th = ~1.
(A-C) Median, maximum, and 99.9th percentile of α. (D-F) Median,
maximum, and 99.9th percentile of τ.
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Modified Erdős-Rényi (di)-graphs

Consider the following procedure for producing a (di)-graph:

Consider an algorithm A that takes as input a (di)graph D
on [n] with some labeling of the vertices with a fixed set of
labels, and outputs another labeled (di)graph A(D) on [n].

The algorithm decides whether or not < i , j > is an arc (edge)
of A(D) only based on the structure and labels of subgraph
induced by all nodes that can be reached from i or j via a
(directed) path of length ≤ N, where N is fixed and does not
depend on n.

Let D be an Erdős-Rényi (di)graph.

Generate the labels independently, with specified probabilities
of assigning a given label.

This defines a family of distributions A(D).

What methods can be used to study such distributions?
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A specific instance

Let D be an Erdős-Rényi digraph with π(n) = c
n for some

c > 1.
Generate labels by drawing an initial state ~s(0).
For every ε > 0 there exist N = N(ε, c) and δ = δ(ε, c) as
well as an algorithm A as on the previous slide so that with
probability approaching 1 as n→∞:
(a) The labeling of A(D) will be the state ~s(N) and a coloring

of A(D).
(b) A does not add new arcs, so that A(D) is a subdigraph of D.
(c) The mean degree of the subdigraph B(D) of A(D) induced by

the giant strongly connected component of D is at least 1 + δ.
(d) The proportion of nodes of B(D) with indegree zero is at

most ε.

Problem 12: Can we deduce that B(D) must contain a directed
cycle?

The answer would be trivially “yes” for the undirected case.
B(D) cannot contain a directed cycle of odd length by point (a).
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