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An ODE Model of Neuronal Networks
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008
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Mathematical Neuroscience is Difficult!

Individual neurons are usually modeled by the the
Hodgkin-Huxley Equations.

Nonlinear ODEs involving multiple time scales.
Hard to analyze both mathematically and computationally.

Neuronal networks involve a large number of individual
neurons.

Details of the connectivity not usually known.
Hard to analyze how connectivity influences ODE dynamics.

Fortune cookie: Doing the impossible is kind of fun.
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Some Simple Facts

The following is true in at least some neuronal networks.

Neurons fire or are at rest.

After a neuron has fired, it has to go through a certain
refractory period when it cannot fire.

A neuron will fire when it has reached the end of its refractory
period and when it receives firing input from a specified
minimal number of other neurons.

Can we build a simple and useful model of neuronal networks
based on these observations?
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A Discrete Dynamical System Model

A directed graph D = [VD ,AD ] and integers n (size of the
network), pi (refractory period), thi (firing threshold).

A state ~s(t) at the discrete time t is a vector:
~s(t) = [s1(t), . . . , sn(t)] where si (t) ∈ {0, 1, . . . , pi} for each i .
The state si (t) = 0 means neuron i fires at time t.

Dynamics on the discrete network:

If si (t) < pi , then si (t + 1) = si (t) + 1.

If si (t) = pi , and there exists at least thi neurons j with
sj(k) = 0 and < j , i > ∈ AD , then si (t + 1) = 0.

If si (t) = pi and there do not exist thi neurons j with
sj(t) = 0 and < j , i > ∈ AD , then si (t + 1) = pi .
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An Example

Assume that refractory period= 1 and threshold= 1.
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Is Modeling with Discrete Time Steps Realistic?

Experimentalists observed that there are parts of real brains (e.g.
antennal lobe of insects, olfactory bulb of mammals) where the
firing activity shows distinctive intervals during which some
neurons fire together while the other neurons are at rest.

Are there ODE models of neuronal networks that predict this type
of dynamics?
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An Architecture

I1, I3 I2, I4 I3, I5 I2, I4

E2, E4E3, E5E2, E4,
E3(ref)E1, E3

Excite Inhibit

E 1 → E 2,E 3

E 2 → E 3

E 3 → E 2,E 4

E 4 → E 5

E 5 → E 4

Assume: E-cells can excite one another via

interneurons.

Winfried Just at OU Exploring a Simple Discrete Model of Neuronal Networks



An Architecture

I1, I3 I2, I4 I3, I5 I2, I4

E2, E4E3, E5E2, E4,
E3(ref)E1, E3

Excite Inhibit

E 1 → E 2,E 3

E 2 → E 3

E 3 → E 2,E 4

E 4 → E 5

E 5 → E 4

Assume: E-cells can excite one another via

interneurons.

Winfried Just at OU Exploring a Simple Discrete Model of Neuronal Networks



The ODE Model Predicts Discrete Episodes

Consider 100 E -cells and 100 I -cells. Each E -cell excites one I -cell
and each I -cell inhibits nine E -cells.
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Two Research Problems

When can we reduce the differential equations model to the
discrete model?

What can we prove about the discrete model?
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Reducing Neuronal Networks to Discrete Dynamics,
by Terman D, Ahn S, Wang X, Just W, Physica D. 2008

Theorem

For the network architecture described above, if the intrinsic and
synaptic properties of the cells are chosen appropriately, then there
is an exact correspondence between solutions of the continuous
and discrete systems for any connectivity between the excitatory
and inhibitory cells.
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What Properties are we Interested in?

For a given discrete model (that is, specified connectivity digraph,
refractory periods, firing thresholds) we may ask about the
(possible, maximal, average)

Lengths of the attractors.

Number of different attractors.

Lengths of transients.
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Continuous and Discrete Models

Assume that refractory period= 1 and threshold= 1.
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Different Transients and Attractors

Winfried Just at OU Exploring a Simple Discrete Model of Neuronal Networks



Some Special Objects

~s~p = [p1, . . . , pn] is the only steady state attractor.

A minimal attractor is one in which each neuron either never
fires or fires as soon as it reaches the end of its refractory
period.

A fully active attractor is one in which every neuron fires at
some time.

An autonomous set consists of neurons that fire as soon as
they reach the end of their refractory periods, regardless of
the dynamics of neurons outside of this set.
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Random Connectivities

For given n, we randomly generate a digraph with n nodes by
including each possible arc < i , j > with probability ρ(n);
independently for all arcs (Erdős-Rényi random digraph).

We randomly generate many initial conditions.

We collect statistics on the proportion of initial states that are
in minimal attractors, fully active minimal attractors, as well
as the size of the largest autonomous set.

How do these properties depend on ρ(n)?
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Results of the Simulations Just W, Ahn S, Terman D, Physica D. 2008
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Minimal Attractors in Digraph System Models of Neuronal
Networks, by Just W, Ahn S, Terman D, Physica D. 2008

Theorem

1 The first phase transition at ρ(n) ∼ ln n
n :

Above this threshold: a generic initial state belongs to a fully
active minimal attractor.
Below this threshold: a generic initial state will not belong to a
minimal attractor.

2 The second phase transition at ρ(n) ∼ c
n :

Above this threshold: the fraction of nodes that belong to the
largest autonomous set will rapidly approach one as ρ
increases.
Below this threshold: this fraction will rapidly dwindle to zero.
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Directions for Further Research

Another phase transition was detected for ρ(n) ∼ 1
n .

Systematically explore what is going on in this region.

Explore these phenomena for random digraphs other than
Erdős-Rényi random digraphs (e.g., scale-free degree
distributions).
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Some Special Digraphs

Cyclic digraphs.

Cyclic digraphs with one shortcut.

Hamiltonian digraphs: There is a Hamiltonian cycle (a
directed cycle that visits every node exactly once).

Strongly connected digraphs: There is a directed path from
every node to every other node.

What kind of dynamical properties are implied by these special
connectivities?
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Cyclic Digraph on n Nodes Sungwoo Ahn, Ph. D. Thesis 2010

Theorem

Let ~p = [p1, . . . , pn], ~th = [1, . . . , 1] >, and p∗ = max~p. Then

The length of any transient is at most
max{n + p∗ − 1, 3n − 2}.
The length of any attractor is a divisor of n.

The number of different attractors is equal to the number of
different necklaces consisting of n black or red beads where all
the red beads occur in blocks of length that is a multiple of
p∗ + 1. It is equal to

b n
p∗+1

c∑
k=1

 1

n − kp∗

∑
a∈{divisors of gcd(k,n−kp∗)}

φ(a)

(n−kp∗
a
k
a

)+ 1,

where φ is the Euler’s phi function.

Winfried Just at OU Exploring a Simple Discrete Model of Neuronal Networks



Empirical Results on Strongly Connected Digraphs
Sungwoo Ahn, Ph. D. Thesis 2010

Let D ∈ Dn
ρ be a strongly connected digraph and

~p = ~th = [1, . . . , 1]. For a given integer n, we run the computer
simulation (Matlab) and record the lengths of the
transients/attractors by changing ρ ∈ { 1n ,

1.4
n ,

1.8
n ,

2.2
n , . . .}. The

values below are the longest lengths obtained from 50 simulation
for each fixed ρ.

n 4 5 6 7 8 9 10 11 12 13 · · ·
Transient 6 9 11 14 21 24 35 39 53 58 · · ·
Attractor 4 5 6 7 8 9 10 11 12 13 · · ·

The lengths of attractors are bounded by n.
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Some Conjectures Sungwoo Ahn, Ph. D. Thesis 2010

Let n be the number of nodes; assume that all refractory periods
and all firing thresholds are 1.

1 Conjecture 1. In strongly connected digraphs any attractor
has length at most n.

2 Conjecture 2. In Hamiltonian digraphs any attractor has
length at most n.

3 Conjecture 3. In cyclic digraphs with one shortcut any
attractor has length at most n.

Conjecture 3 was proved to be true in the thesis; in fact, it was
proved that the length of any attractor must be a divisor of
either n or n1, the length of the shortcut.

Conjectures 1 and 2 are still completely open.

Winfried Just at OU Exploring a Simple Discrete Model of Neuronal Networks



Some Conjectures Sungwoo Ahn, Ph. D. Thesis 2010

Let n be the number of nodes; assume that all refractory periods
and all firing thresholds are 1.

1 Conjecture 1. In strongly connected digraphs any attractor
has length at most n.

2 Conjecture 2. In Hamiltonian digraphs any attractor has
length at most n.

3 Conjecture 3. In cyclic digraphs with one shortcut any
attractor has length at most n.

Conjecture 3 was proved to be true in the thesis; in fact, it was
proved that the length of any attractor must be a divisor of
either n or n1, the length of the shortcut.

Conjectures 1 and 2 are still completely open.

Winfried Just at OU Exploring a Simple Discrete Model of Neuronal Networks



Some Conjectures Sungwoo Ahn, Ph. D. Thesis 2010

Let n be the number of nodes; assume that all refractory periods
and all firing thresholds are 1.

1 Conjecture 1. In strongly connected digraphs any attractor
has length at most n.

2 Conjecture 2. In Hamiltonian digraphs any attractor has
length at most n.

3 Conjecture 3. In cyclic digraphs with one shortcut any
attractor has length at most n.

Conjecture 3 was proved to be true in the thesis; in fact, it was
proved that the length of any attractor must be a divisor of
either n or n1, the length of the shortcut.

Conjectures 1 and 2 are still completely open.

Winfried Just at OU Exploring a Simple Discrete Model of Neuronal Networks


