
Hard questions about

simple finite dynamical

systems

Vinny Just

Mathematical Biosciences

Institute and

Department Mathematics,

Ohio University

May 25, 2006

1



Transcriptional gene regulation

The best understood mechanism of gene reg-

ulation is transcriptional cis-regulation. As an

example, consider a situation where gene num-

ber 7 is being transcribed iff transcription fac-

tor number 12 or transcription factor number

28 bind to the promotor, and repressor num-

ber 13 does not bind. If gene number 7 is

transcribed at time step t and its product does

itself play a role in gene regulation, e.g., is

transcription factor number 7, then this prod-

uct will play its regulatory role at time step

t + 1.

2



Boolean dynamical systems

Boolean dynamical systems (BDS’s) have been

proposed and studied as models of gene regu-

lation. The state space is {0,1}n; for example,

a state vector [0,1,1] means that the product

of gene 1 is absent or at low concentration

while the products of genes 2 and 3 are present

at high concentration. The updating function

f : {0,1}n → {0,1}n computes the state of the

system at the next time step. In the example

from the previous slide, we would have

f7(x̄) = (x12 ∨ x28) ∧ ¬x13.

3



Questions about BDS’s:

• How to build a BDS model from data?

(“Reverse Engineering”)

• Given a BDS by a formula for its updating

function, deduce the dynamic properties.

• If we treat BDS models as approximations

of continuous differential equation models

of gene regulatory networks, how well does

the dynamics of the BDS reflect the dy-

namics of the underlying system of differ-

ential equation?

4



Some questions about dynamics of BDS’s:

• Does there exist a steady state?

• Is every limit cycle a steady state?

• Conversely, does there exist a limit cycle of

length > 1?

• Does there exist a limit cycle of length 2?

5



A simple-minded answer:

For answering any of these questions, just com-

pute f(x̄), f(f(x̄)), . . . for all x̄ ∈ {0,1}n and

keep track if the length of the limit cycles you

found.

This is guaranteed to work but we may need

to look at 2n initial states x̄ which becomes

infeasible for large n.

(When) can we find a faster algorithm?

6



The class P:

Questions like “Does this BDS have a limit

cycle?” are known as decision problems. An

instance of this problem is a given BDS. The

description length of an instance is the number

of bits needed to specify the instance, in this

case, the updating function f . If each com-

ponent of f is relatively simple, e.g., linear, a

monomial, a threshold function, then the de-

scription length will be on the order of O(n2),

where n is the number of variables.

A decision problem is in the class P if there

exists an algorithm for correctly deciding this

problem in all instances whose running time on

instances of size n is bounded by a polynomial

in n.

7



We will refer to the problem of existence of

limit cycles of length > 1 as the LC-problem

and to the problem of existence of limit cycles

of length 2 as the LC2-problem.

Theorem 1. (Elspas 1959, Hernández-Toledo

2005, Jarrah, Laubenbacher, Vera-Licona 200?)

The LC-problem for BDS’s with linear updat-

ing functions is in the class P.

Theorem 2. (Colón-Reyes, Laubenbacher, Pareigis

2004) The LC-problem for BDS’s where each

component of the updating function is a mono-

mial, i.e., is of the form xi1xi2 . . . xik, is in the

class P.

8



Question 3. How about more general BDS’s?

What if we allow also functions of the form

xi1xi2 . . . xik + 1 or threshold functions? What

if we allow only functions of these forms that

depend on at most two variables?

9



Witnesses

Suppose x̄ is a state that is part of a limit

cycle of length 2. Such x̄ will be called a wit-

ness for (a “yes” answer to) the LC2-problem.

Verifying that a given x̄ is a witness for the

LC2-problem can be done by an algorithm that

is polynomial in the description length of the

given BDS.

In contrast, let x̄ be a state that is part of a

limit cycle of length > 1. Then x̄ is a witness

for the LC-problem, but since limit cycles may

have length that is exponential in n, it may not

be possible to verify in polynomial time that x̄

is a witness for the LC-problem.

10



The class NP

A decision problem is in the class NP if:

• There is a notion of “potential witness”

and “witness” for an instance of the prob-

lem.

• There exists a witness for an instance I iff

the correct answer for instance I is “yes.”

• The problem of deciding whether a poten-

tial witness is an actual witness is in the

class P.

Thus the LC2-problem is in the class NP, but

it is not clear whether the LC-problem is in the

class NP.

11



The P = NP problem

Question 4. Is P = NP?

This is one of the major open problems in

mathematics.

12



NP-hard and NP-complete problems

A decision problem is NP-hard if the existence

of a polynomial-time algorithm for solving this

problem would imply P = NP. An NP-hard

problem that is itself in the class NP is NP-

complete.

More than a thousand decision problems are

known to be NP-complete.

13



Two examples

Theorem 5. (Akutsu, Kuhara, Maruyama, Miyano

1998) The problem of deciding whether a BDS

has a steady state is NP-complete.

Suppose x1, . . . , xn are Boolean variables and

ψ = (y11 ∨ y12 ∨ y13) ∧ . . . ∧ (ym1 ∨ ym2 ∨ ym3),

where ykj is either xikj
or ¬xikj

for some ikj ∈
[n]. Then ψ is satisfiable if there exists a

Boolean vector x̄ of length n such that ψ(x̄)

evaluates to 1. The 3-SAT problem takes

as instances formulas ψ as above and asks

whether ψ is satisfiable.

By a classical theorem (Karp 1972), 3-SAT is

an NP-complete problem.

14



Polynomial-time reducibility

Let E and D be two decision problems. We

say that D is polynomial-time reducible to E if

there exists an algorithm A such that:

• A takes instances of D as inputs and al-

ways outputs the correct answer for each

instance of D.

• A uses as a subroutine a hypothetical al-

gorithm B for solving E.

• There exists a polynomial p such that for

every instance of D of size n the algorithm

A terminates in at most p(n) steps if each

call of the subroutine B is counted as only

one step.

15



How to prove NP-completeness?

The formal definition of NP-hardness of a de-

cision problem E requires that every decision

problem D in the class NP be polynomial-time

reducible to E. Thus if we want to show that a

given decision problem F is NP-hard, it suffices

to show that some decision problem E that is

known to be NP-hard is polynomial-time re-

ducible to F . In other words, we need to show

that if there were a polynomial-time algorithm

for deciding F , there would also be such an

algorithm for E.

16



3-SAT is polynomial-time reducible to LC2

Suppose {x1, . . . xn} is a set of Boolean vari-

ables, and suppose

ψ = (y11 ∨ y12 ∨ y13) ∧ . . . ∧ (ym1 ∨ ym2 ∨ ym3),

where ykj is either xikj
or ¬xikj

for some ikj ∈
[n]. We construct a Boolean dynamical system

< {0,1}n+2, f > as follows:

• fi = xi for i ∈ [n].

• fn+1 = ψ(x1, . . . , xn) ∧ xn+2.

• fn+2 = xn+1.

17



The dynamics of our system

Let us see what happens to the updates of our

system.

Case 1: ψ(x1, . . . , xn) = 0.

[x1, . . . , xn,?,?] 7→ [x1, . . . , xn,0,?] 7→ [x1, . . . , xn,0,0].

Thus the system reaches a steady state from

any initial state in at most two steps.

Case 2: ψ(x1, . . . , xn) = 1.

[x1, . . . , xn,1,0] 7→ [x1, . . . , xn,0,1] 7→ [x1, . . . , xn,1,0].

This is a limit cycle of length 2. Such limit

cycles exist iff ψ is satisfiable.

18



3-SAT is polynomial-time reducible to LC2

Here is an algorithm for 3-SAT that uses a

hypothetical algorithm for LC2:

• Build the BDS we just described. This can

be done by a polynomial-time algorithm in

the description length of ψ.

• Run our hypothetical algorithm for decid-

ing whether this BDS has a limit cycle of

length 2.

• If yes, conclude that ψ is satisfiable. If not,

conclude that ψ is not satisfiable.

19



Generalized monomial systems

Theorem 6.The LC2-problem is NP-complete

and the LC-problem is NP-hard for BDS’s in

which every component of the updating func-

tion is of the form xixj or of the form xi + 1

for some (possibly equal) i, j ∈ [n].

The proof uses essentially the same idea that

we have just presented, but one needs to work

a little harder.

20



The system used in Theorem 6

• fi = xi.

• fn+i = xi + 1.

• If yk,1 = ¬xik,1
and yk,2 = ¬xik,2

, then f2n+k =

xik,1
xik,2

.

• If yk,1 = xik,1
and yk,2 = ¬xik,2

, then f2n+k =

xn+ik,1
xik,2

.

• If yk,1 = ¬xik,1
and yk,2 = xik,2

, then f2n+k =

xik,1
xn+ik,2

.

• If yk,1 = xik,1
and yk,2 = xik,2

, then f2n+k =

xn+ik,1
xn+ik,2

.

21



• If yk,3 = ¬xik,3
, then f2n+m+k = x2n+kxik,3

.

• If yk,3 = xik,3
, then f2n+m+k = x2n+kxn+ik,3

.

• f2n+2m+k = x2n+m+k + 1.

• f2n+3m+1 = x2n+2m+1.

• f2n+3m+k+1 = x2n+3m+kx2n+2m+k+1 for

k ∈ [m− 1].

• f2n+4m+1 = x2n+4m+2 + 1.

• f2n+4m+2 = x2n+4mx2n+4m+1.



Monotone systems

A Boolean function f is monotone if x̄ ≤ ȳ

implies f(x̄) ≤ f(ȳ). We say that a BDS is a

monotone system if every component fk of the

updating function can be written as a combi-

nation of functions xi∨xj and xi∧xj. Note that

the use of negations is not allowed in mono-

tone systems. Moreover, note that the vec-

tors [0, . . . ,0] and [1, . . . ,1] are steady states

for every monotone system. Thus the result

of Akutsu et al. does not apply to such sys-

tems.

22



Theorem 7. The problem of deciding whether

a given monotone BDS has at least three steady

states is NP-complete.

Proof: Suppose {x1, . . . xn} is a set of Boolean

variables, and suppose

ψ = (y11 ∨ y12 ∨ y13) ∧ . . . ∧ (ym1 ∨ ym2 ∨ ym3),

where ykj is either xikj
or ¬xikj

for some ikj ∈
[n]. We construct a Boolean dynamical system

< {0,1}2n+3, f > as follows:

23



• fi = (xi∧x2n+1∧x2n+3)∨x2n+2 for i ∈ [2n].

• f2n+1 = (x1 ∨ xn+1) ∧ · · · ∧ (xn ∨ xn+n).

• f2n+2 = (x1 ∧ xn+1) ∨ · · · ∨ (xn ∧ xn+n).

• f2n+3 = ψ∗(x1, . . . , xn, xn+1, . . . , x2n), where

ψ∗ is obtained from ψ by replacing every

occurrence of ¬xi by xn+i.

24



The dynamics of our system

Let x̄ be an initial state of our system.

• If xi = xn+i = 1 for some i ∈ [n], then
f(f(x̄)) takes values xj = 1 for all j ∈ [2n]
and f3(x̄) = [1, . . . ,1].

• If xi = xn+i = 0 for some i ∈ [n] and the
system does not reach the steady state
[1, . . .1] from x̄, then f(f(x̄)) takes val-
ues xj = 0 for all j ∈ [2n] and f3(x̄) =
[0, . . . ,0].

• If the system does not reach the steady
state [1, . . . ,1] from x̄ and ψ is not satisfi-
able, then f3(x̄) = [0, . . . ,0].

• If ψ(x1, . . . , xn) = 1, then
x̄ = [x1, . . . , xn,¬x1, . . . ,¬xn,1,0,1]
is a steady state.

25



LC and LC2 for monotone systems

Theorem 8.The LC2-problem is NP-complete

and the LC-problem is NP-hard for BDS’s in

which every component of the updating func-

tion is of the form xi∨xj or of the form xi∧xj

for some (possibly equal) i, j ∈ [n].

The proof combines ideas of the proofs of our

previous theorems.

26



The system used in Theorem 8

• fxi,1 = xi,L ∨ tn+1 for i ∈ [n].

• fci,1 = ci,L ∨ tn+1 for i ∈ [n].

• fxi,`+1 = xi,` for i ∈ [n] and ` ∈ [L− 3].

• fci,`+1 = ci,` for i ∈ [n] and ` ∈ [L− 3].

• fxi,L−1 = xi,L−2 ∧ uL−4 for i ∈ [n].

• fci,L−1 = ci,L−2 ∧ uL−4 for i ∈ [n].

• fxi,L = xi,L−1 ∧ eL−4 for i ∈ [n].

• fci,L = ci,L−1 ∧ eL−4 for i ∈ [n].

27



• fvi,1 = xi,1 ∨ ci,1 for i ∈ [n].

• fvi,j+1 = vi,` for i ∈ [n] and j ∈ [i− 1].

• fu1 = v1,1.

• fui+1 = ui ∧ vi+1,i+1 for i ∈ [n− 1].

• fun+r = un+r−1 for r ∈ [L− 4− n].

• fwi,1 = xi,L−2 ∧ ci,L−2 for i ∈ [n].

• fwi,j+1 = wi,j for i ∈ [n] and j ∈ [i− 1].

• ft1 = w1,1.

• fti+1 = ti ∨ wi+1,i+1 for i ∈ [n− 1].



• ftn+1 = tn ∨ tn+1.

• fdk,1
= xik,1,1 ∨ xik,2,1 if k ∈ [m] and yk,1 =

xik,1
and yk,2 = xik,2

.

• fdk,1
= xik,1,1 ∨ cik,2,1 if k ∈ [m] and yk,1 =

xik,1
and yk,2 = ¬xik,2

.

• fdk,1
= cik,1,1 ∨ xik,2,1 if k ∈ [m] and yk,1 =

¬xik,1
and yk,2 = xik,2

.

• fdk,1
= cik,1,1 ∨ cik,2,1 if k ∈ [m] and yk,1 =

¬xik,1
and yk,2 = ¬xik,2

.

• fdk,2
= dk,1 ∨ xik,3,2 if k ∈ [m] and yk,3 =

xik,3
.

• fdk,2
= dk,1 ∨ cik,3,2 if k ∈ [m] and yk,3 =

¬xik,3
.



• fdk,`+2
= dk,`+1 for k ∈ [m] and ` ∈ [k − 1].

• fe1 = d1,2.

• fek+1 = ek ∧ dk,k+1 for k ∈ [m].

• fem+r+1 = em+r for r ∈ [L− 5−m].


