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1.  Introduction 
 
1.3  Vectors:  Cartesian Re-Im Representation (Phasors) 
 
 Here is an alternate vector representation. 
 

iP Pe   
 
 The phasor iP e   is a polar representation for vectors, where P is the length of vector P , e is the 

natural logarithm base, 1i    is the imaginary operator, and  is the angle of vector P .  ie   gives the 
direction of the length P, according to Euler’s identity. 
 

cos sinie i     
 

ie   is a unit vector in the direction of vector P . 
 
Phasor Re-Im representation of a vector is equivalent to Cartesian XY representation, where the real (Re) 

axis is along X (or î ) and the imaginary (Im) axis is along Y (or ĵ ). 
 

cos
(cos sin )

sin

cosˆ ˆ(cos sin )
sin

Re i

Im

X

Y

P P
P P i Pe

P P

P P
P P i j

P P


 




 



   
       

  

   
      

  

 

 
A strength of Cartesian Re-Im representation using phasors is in taking time derivatives of vectors – the 
derivative of the exponential is easy ( ( )s sd ds e e ). 

2 2

2 2
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2

2
2 2

2

2
2

2
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cos 2 sin sin cos

sin 2 cos cos
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i i i i

d P d Pe

dt dt

d P d
Pe iP e

dt dt

d P
Pe iP e iP e iP e i P e

dt

d P
Pe iP e iP e P e

dt

P P P Pd P

dt P P P



 

    

   



   

  

      
    



 

    

   

  


  



     

   

   
   2sinP 

 
 
 
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Where we had to use extensions of Euler’s identity 
 

2

2 2

cos sin

cos sin sin cos

sin cos cos sin

i

i

i

e i

ie i i i

i e i i i







 

   

   

 

    

     

 

 
 

Compare this double-time-derivative with the XY approach. 
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
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We obtain the same result, but the Re-Im phasor time differentiation is made in compact vector notation 
along the way. 
 
 
 Above we used the product and chain rules of time differentiation. 
 

 product rule  
( ) ( )

( ) ( ) ( )( )
( ( ) ) ( ) ( ) ( )

i t i t
i t i t i td dP t de de

P t e e P t P t e P t
dt dt dt dt

 
       

  

 chain rule  
( ) ( )

( )( )
( )

( )

i t i t
i tde de d t

ie t
dt d t dt

 
 


    

 
The result for this example is 
 

( ) ( ) ( )( ( ) ) ( ) ( ) ( )i t i t i td
P t e P t e P t ie t

dt
       
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2.  Position Kinematics Analysis 
 
2.1  Four-Bar Mechanism Position Analysis 
 

2.1.1  Tangent Half-Angle Substitution Derivation and Alternate Solution Method 
 
Tangent half-angle substitution derivation 
 
 In this subsection we first derive the tangent half-angle substitution using an 
analytical/trigonometric method.  Defining parameter t to be 
 

tan
2

t
   
 

 

 
i.e. the tangent of half of the unknown angle , we need to derive cos and sin as functions of parameter 
t.  This derivation requires the trigonometric sum of angles formulae. 
 

cos( ) cos cos sin sin

sin( ) sin cos cos sin

a b a b a b

a b a b a b

 
  


 

 
 To derive the cos term as a function of t, we start with 
 

cos cos
2 2

     
 

 

 
The cosine sum of angles formula yields 
 

2 2cos cos sin
2 2

         
   

 

 

Multiplying by a ‘1’, i.e. 2cos
2

 
 
 

 over itself yields 

 

2 2

2 2 2

2

cos sin
2 2

cos cos 1 tan cos
2 2 2cos

2

 
  



                                 
 

 

 

The cosine squared term can be divided by another ‘1’, i.e. 2 2cos sin 1
2 2

        
   

. 

 



 7

2

2

2 2

cos
2

cos 1 tan
2 cos sin

2 2




 

  
                            

 

 

Dividing top and bottom by 2cos
2

 
 
 

 yields 

 

2

2

1
cos 1 tan

2 1 tan
2




 
                     

 

 
Remembering the earlier definition for t, this result is the first derivation we need, i.e. 
 

2

2

1
cos

1

t

t
 



 

 
 
 
 To derive the sin term as a function of t, we start with 
 

sin sin
2 2

     
 

 

 
The sine sum of angles formula yields 
 

sin sin cos cos sin 2sin cos
2 2 2 2 2 2

                              
           

 

 
Multiplying top and bottom by cosine yields 
 

2 2

sin
2

sin 2 cos 2 tan cos
2 2 2cos

2


  



 
                     
 
 

 

 
From the first derivation we learned 
 

2

2

1
cos

2 1 tan
2




         
 
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Substituting this term yields 
 

2

1
sin 2 tan

2 1 tan
2




 
                

 

 
Remembering the earlier definition for t, this result is the second derivation we need, i.e. 
 

2

2
sin

1

t

t
 


 

 
 
 The tangent half-angle substitution can also be derived using a graphical method as in the figure 
below. 
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Alternate solution method 
 
 The equation form 
 

cos sin 0E F G     
 

arises often in the position solutions for mechanisms and robots.  It appeared in the 4 solution for the 
four-bar mechanism in the ME 3011 NotesBook and was solved using the tangent half-angle substitution. 
 
 Next we present an alternative and simpler solution to this equation.  We make two simple 
trigonometric substitutions based on the figure below. 
 

 
 
Clearly from this figure we have 
 

2 2
cos

E

E F
 


   2 2

sin
F

E F
 


 

 
 

 In the original equation we divide by 2 2E F  and rearrange. 
 

2 2 2 2 2 2
cos sin

E F G

E F E F E F
  
 

  
 

 
The two simple trigonometric substitutions yield 
 

2 2
cos cos sin sin

G

E F
    

 


 

 
Applying the sum-of-angles formula cos( ) cos cos sin sina b a b a b    yields 
 

2 2
cos( )

G

E F
  
 


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And so the solution for  is 
 

1
1,2 2 2

cos
G

E F
    

   
 

 

 
 where 
 

1tan
F

E
      

 

 
and the quadrant-specific inverse tangent function atan2 must be used in the above expression for . 
 
 There are two solutions for , indicated by the subscripts 1,2, since the inverse cosine function is 
double-valued.  Both solutions are correct.  We expected these two solutions from the tangent-half-angle 
substitution approach.  They correspond to the open- and crossed-branch solutions (the engineer must 
determine which is which) to the four-bar mechanism position analysis problem. 
 
 For real solutions for  to exist, we must have 
 

2 2
1 1

G

E F


  


  or  

2 2
1 1

G

E F
  


 

 
If this condition is violated for the four-bar mechanism, this means that the given input angle 2 is beyond 
its reachable limits (see Grashof’s Law). 
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Alternate Four-Bar Mechanism Transmission Angle Derivation 
 
 Rather than using the Vertical Angles Theorem as in the ME 3011 NotesBook, an alternate 
approach to deriving the Four-Bar Mechanism Transmission Angle  is presented here, using the fact that 
the sum of the interior angles for any quadrilateral must be 360  (2 rad). 
 

 
Alternate Method Figure to Derive  

 
As seen in the figure above, the four interior angles of the four-bar mechanism quadrilateral are, in radians: 
 

2 1     2 3          4 1     

 
These four angles must sum to 2 : 
 

2 1 2 3 4 1( ) ( ) ( ) ( ) 2                   

 
Rearranging, 
 

2 2 1 1 3 4

3 4

4 3

2

2 2

         
    

  

        
   

 
 

 
Remembering that only the magnitude of this angle is important (not caring the direction), we have 

4 3    , identical to the transmission angle result derived in the ME 3011 NotesBook. 
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Four-Bar Mechanism Coupler Curve Families 
 
 It is difficult to express the coupler curve of a four-bar mechanism analytically.  Recall the coupler 
curve is the trace of point C (the vertex of the coupler triangle for link 3) in the plane.  It can be an 
important design consideration to shape the coupler curve according to specific needs in the task.  This 
subsection presents an example of different coupler curves for the same four-bar mechanism. 
 First we present the different coupler curves for different lengths along r3.  Then we present the 
different coupler curves for different angles 3. 

 

 
Coupler Curve Family for Different Lengths along r3 
  30 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1CAr r  3 0   

 

 
Coupler Curve Family for Different Angles 3 

30.5CAr r  3 0 30 60 90 120 150 180    
        

  

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
X (m)

-0.1

-0.05

0

0.05

0.1

0.15

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
X (m)

-0.1

-0.05

0

0.05

0.1

0.15
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2.1.3  Four-Bar Mechanism Solution Irregularities 
 
Four-bar mechanism position singularity  0G E   

4 1 1 2 2

2 2 2 2
1 2 3 4 1 2 1 2

2 ( )

2 cos( )

E r rc r c

G r r r r r r  

 

     
 

 
For simplicity, let 1 = 0 (just rotate the entire four-bar mechanism model for zero ground link angle). 
 

2 2 2 2
1 2 3 4 1 4 2 4 1 22 2 ( ) 0G E r r r r r r r r r c          

 
I have encountered two example four-bar mechanisms with this 0G E   singularity. 
 
Case 1 

When 1 4r r  and 2 3r r , 2 2 2 2 2
1 2 2 1 1 2 1 1 22 2 ( ) 0G E r r r r r r r r c          ALWAYS, 

regardless of 2. 
 
Example 

Given 1 2 3 410, 6, 6, 10r r r r    ; this mechanism is ALWAYS singular.  To fix this let 

1 2 3 410, 5.9999, 6.0001, 10r r r r     and MATLAB will be able to calculate the position analysis 

reliably at every input angle. 
 
 
Case 2 

When 1 32r r  and 4 22r r , and furthermore 3 23 5r r , 

 
2 2 2 2

3 2 3 2 2 3 2 2 3 2

2 2 2 2 2 2
2 2 2 2 2 2 2

2
2 2

4 4 8 4 ( )c

100 25 40 8
4 c

9 9 3 3
8

c
3

G E r r r r r r r r r

r r r r r r

r

       

     

 

 

 
 This 0G E   occurs only when 2 90    .  Case 2 is much less general than case 1. 

 
Example 

Given 1 2 3 410, 3, 5, 6r r r r    ; this mechanism is singular when 2 90    .  To fix this ignore 

2 90     or set your 2 array to avoid these values. 
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2.1.4  Grashof’s Law and Four-Bar Mechanism Joint Limits 
 
Grashof’s Law 
 

Grashof’s Law was presented in the ME 3011 NotesBook to determine the input and output link 
rotatability in a four-bar mechanism.  Applying Grashof’s Law we determine if the input and output links 
are a crank (C) or a rocker (R).  A crank enjoys full 360 degree rotation while a rocker has a rotation that 
is a subset of this full rotation.  This section presents more information on Grashof’s Law and then the 
next subsection presents four-bar mechanism joint limits. 
 

Grashof's condition states "For a four-bar mechanism, the sum of the shortest and longest link 
lengths should not be greater than the sum of two remaining link lengths".  With a given four-bar 
mechanism, the Grashof Condition is satisfied if L S P Q    where S and L are the lengths of the shortest 
and longest links, and P and Q are the lengths of the other two intermediate-sized links. If the Grashof 
condition is satisfied, at least one link will be fully rotatable, i.e. can rotate 360 degrees. 

 
For a four-bar mechanism, the following inequalities must be satisfied to avoid locking of the 

mechanism for all motion. 
 

2 1 3 4

4 1 2 3

r r r r

r r r r

  

  
 

 
 
 With reference to the figure below, these inequalities are derived from the fact that the sum of two 
sides of a triangle must be greater than the third side, for triangles 4 1 1O AB  and 2 2 2O A B , respectively.  Note 

from our standard notation, 1 2 4r O O , 2 2r O A , 3r AB , and 4 4r O B . 

 

 
 
  

A

B

A

O

2

2 O4

A1

B1

B2
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Four-Bar Mechanism Joint Limits 
 
Input Angle Joint Limits 
 
 If Grashof's Law predicts that the input link is a rocker, there will be rotation limits on the input 
link.  These joint limits occur when links 3 and 4 are aligned.  As shown in the figure below, there will be 
two joint limits, symmetric about the ground link. 
 

 
 
 To calculate the input joint limits, when they exist, we use the law of cosines. 
 

2 2 2
3 4 1 2 1 2 2

2 2 2
1 1 2 3 4

2
1 2

( ) 2 cos

( )
cos

2

L

L

r r r r r r

r r r r

rr



 

   

   
   

 

 

 
 
 

  with symmetry about r1. 
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Joint Limit Example 1   Given 1 2 3 410, 6, 8, 7r r r r     

 
L S P Q     (10 6 8 7   ) 

 
so we predict only double rockers from this Non-Grashof Mechanism. 
 

 
2 2 2

1 1
2

10 6 (8 7)
cos cos 0.742 137.9

2(10)(6)L     
       

 
  

 
This method can also be used to find angular limits on link 4 when it is a rocker.  In this case links 2 and 
3 align. 
 

 
2 2 2

1 1

4

10 7 (6 8)
cos cos 0.336 109.6

2(10)(7)

180 70.4L



 

    
       

 

   



 

 

 
In this example, the allowable input and output angle ranges are: 
 

2137.9 137.9      470.4 289.6    

 
This example is shown graphically in the ME 3011 NotesBook, in the Grashof’s Law section (2. Non-
Grashof double rocker, first inversion). 

 
 

Caution 
The figure on the previous page does not apply in all joint limit cases.  For Grashof Mechanisms 

with a rocker input link, one link 2 limit occurs when links 3 and 4 fold upon each other and the other link 
2 limit occurs when links 3 and 4 stretch out in a straight line.  See Example 4 (and Example 3 for a similar 
situation with the output link 4 limits). 
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Joint Limit Example 2   Given 1 2 3 410, 4, 8, 7r r r r     

 
L S P Q     (10 4 8 7   ) 

 
Since the S link is adjacent to the fixed link, we predict this Grashof Mechanism is a crank-rocker.  
Therefore, there are no 2 joint limits. 
 

 
2 2 2

1 1
2

10 4 (8 7)
cos cos 1.3625

2(10)(4)L     
     

 
 

 
which is undefined, thus confirming there are no 2 joint limits. 

 
 

There are limits on link 4 since it is a rocker.  For 4min, links 2 and 3 are stretched in a straight line (their 
absolute angles are identical). 
 

 
2 2 2

1 1

4min

10 7 (4 8)
cos cos 0.036 88.0

2(10)(7)

180 92.0



 

    
    

 

  



 

 

 
 

For 4max, links 2 and 3 are instead folded upon each other (their absolute angles are different by ). 
 

 
2 2 2

1 1

4max

10 7 ( 4 8)
cos cos 0.95 18.2

2(10)(7)

180 161.8



 

     
    

 

  



 

 

 
 
In this example, the output angle range is 
 

492.0 161.8    

 
and 2 is not limited.  This example is shown graphically in the ME 3011 NotesBook, in the Grashof’s 
Law section (1a. Grashof crank-rocker). 
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Joint Limit Example 3   Given 1 2 3 411.18, 3, 8, 7r r r r     (in) and 1 10.3     

 
L S P Q     (11.18 3 8 7   ) 

 
This is the four-bar mechanism from Term Example 1 and it is a four-bar crank-rocker Grashof 
Mechanism.  There are no limits on 2 since link 2 is a crank. 
 
 The 4 limits are 
 

4 120.1L    (links 2 and 3 stretched in a line) 

 

4 172.5L    (links 2 and 3 folded upon each other in a line) 

 
 
The output angle range is 
 

4120.1 172.5    

 
and 2 is not limited.  This example is NOT shown graphically in the ME 3011 NotesBook Grashof’s Law 
section.  However, these 4 limits are clearly seen in the F.R.O.M. plot for angle 4 in Term Example 1 in 
the ME 3011 NotesBook. 
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Joint Limit Example 4   Given 1 2 3 410, 8, 4, 7r r r r     
 

L S P Q     (10 4 8 7   ) 
 

so we predict this Grashof Mechanism is a double-rocker (S opposite fixed link).  The 2 joint limits are 
no longer symmetric about the ground link, as was the case in the Non-Grashof Mechanism double 
rocker (Example 1).  For 2min, links 3 and 4 are folded upon each other (their absolute angles are identical). 
 

 
2 2 2

1 1
2min

10 8 (7 4)
cos cos 0.969 14.4

2(10)(8)
     

    
 

  

 
For 2max, links 3 and 4 are instead stretched in a straight line (their absolute angles are different by  as 
in Example 1). 
 

 
2 2 2

1 1
2max

10 8 (7 4)
cos cos 0.269 74.4

2(10)(8)
     

    
 

  

 

 
2min Diagram     2max Diagram 

 

0 1 2 3 4 5 6 7 8 9 10
0

1
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3

4

5
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8

X (m)
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m
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3

4
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8

X (m)

Y
 (

m
)
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This behavior reverses for the 4 joint limits.  For 4min, links 2 and 3 are stretched in a straight line (their 
absolute angles are identical). 
 

 
2 2 2

1 1

4min

10 7 (8 4)
cos cos 0.036 88.0

2(10)(7)

180 92.0



 

    
    

 

  



 

 

 
For 4max, links 2 and 3 are instead folded upon each other (their absolute angles are different by ). 
 

 
2 2 2

1 1

4min

10 7 (8 4)
cos cos 0.95 18.2

2(10)(7)

180 161.8



 

    
    

 

  



 

 

 

 
4min Diagram     4max Diagram 

 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

X (m)

Y
 (

m
)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

X (m)

Y
 (

m
)



 21

 
In this plot we can see the minimum and maximum values we just calculated for links 2 and 4. 
 
Note  at 2 min 14.4   , 3 138.6    and 3 221.4     are the same angle. 

 
Again, this example is NOT shown graphically in the ME 3011 NotesBook Grashof’s Law section.  
However, a similar case with the same dimensions, in different order, is shown in the ME 3011 NotesBook 
( 1 2 3 47, 10, 4, 8r r r r     , 1d. Grashof double rocker). 

 
 

Grashof’s Law only predicts the rotatability of the input and output links; it says nothing about the 
rotatability of the coupler link 3 – in this case, what is the rotatability of the coupler link?  (In this case 
the coupler link S rotates fully, proving that the relative motion is the same amongst all four-bar 
mechanism inversions, though the absolute motion with respect to the possible 4 ground links is very 
different.) 
 
 
For more information, see: 
 
 R.L. Williams II and C.F. Reinholtz, 1987, “Mechanism Link Rotatability and Limit Position 
Analysis Using Polynomial Discriminants”, Journal of Mechanisms, Transmissions, and Automation 
in Design, Transactions of the ASME, 109(2): 178-182. 
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Output Angle Joint Limits 
 
 If Grashof's Law predicts that the output link is a rocker, there will be rotation limits on the output 
link.  These joint limits occur when links 2 and 3 are aligned.  As shown in the figures below, there will 
be two joint limits.  When links 2 and 3 are straight out, this leads to the minimum output joint condition.  
When links 2 and 3 are folded upon each other, this leads to the maximum output joint condition.  Note 
that the input link is not limited in these cases, but may continue to rotate freely in either direction. 

 

  
Minimum Output Joint Condition  Maximum Output Joint Condition 

 
 To calculate the output joint limits, when they exist, we again use the law of cosines.  We also 
need the law of sines.  Angle a is the interior angle between 1r  and the line of ( 2 3,r r ) .  Angle c is the 

interior angle between 4r  and the line of ( 2 3,r r ) . 

 
2 2 2

1 2 3 4 1

2 3 4

1 4

1

2 1

4 2

( )
cos

2( )

sin sin

MIN

MIN MIN

MIN MIN

MIN MIN MIN

r r r r
c

r r r

r
a c

r

a

c

 

 





   
   

 
  

 

 

 

   

2 2 2
1 3 2 4 1

3 2 4

1 4

1

2 1

4 2

( )
cos

2( )

sin sin

MAX

MAX MAX

MAX MAX

MAX MAX MAX

r r r r
c

r r r

r
a c

r

a

c

  

  





   
   

 
  

 

  

  

 

 
 
Again, note that the input link is not limited in these cases; the notation 2MIN and 2MAX  simply means 

those input angles that correspond to the limited output angles 4MIN and 4MAX . 
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2.2  Slider-Crank Mechanism Irregular Designs 
 
 Some alert ME 3011 students posed the question, “For the slider-crank mechanism, what happens 
if 3 2h r r  ?”  This section answers that question and presents three other irregular slider-crank 

mechanisms and their particular problems.   All four design irregularity cases below are for the Inversion 
1 Slider-Crank mechanism. 
 

3 2h r r 
 

In this case, the slider-crank mechanism has a singularity at 2

3

2

  .  The position variables’ 

slopes are discontinuous, and thus the accelerations infinite at this singularity.  At the singularity, 3r  is 

vertical up and 2r  vertical down, and the position variable x = 0, as shown below. 

In this example, 2 31, 5, 4r r h   , and 2.5CAr   cm. 

 
F.R.O.M. Singularity 

 
For this situation with 3 2h r r  , the maximum slider displacement maxx  and associated input 

angle *
2  are calculated as follows: 

 

for * 1
2

2 3

sin
h

r r
   

   
   *

max 2 3 2( )cos( )x r r    

 
 
 These equations are easily derived by drawing the limiting cases, drawing the applicable right 
triangles, and using geometry and trigonometry relationships. 
 

In this example, the minimum slider displacement is min 0x   m, which occurs at input angle 

2 270   , and the maximum slider displacement is max 0.045x   m, which occurs at input angle 2 41.8  

. 
 
  

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
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2 3h r r   

In this case, the slider-crank mechanism has a singularity at 2 2

  .  At the singularity, 3r  is 

vertical down and 2r  is vertical up, and the position variable x = 0, as shown below.  Also, the input angle 

is limited (i.e. the ‘crank’ is not a crank). Further, unlike standard slider-crank mechanisms, this case has 
the possibility of branch-jumping (at the singularity), depending on mechanism links’ inertia.  The 
condition for minimum input angle is when 2r  and 3r  are extended in a straight line.  If the slider-crank 

mechanism remains in the right branch, the condition for maximum input angle is when 2r  and 3r  are 

perpendicular.  The limit equations for this case are presented below. 
In this example, 2 35, 1, 4r r h   , and 0.5CAr   cm. 

 
Minimum joint limit Maximum joint limit 

 
Singularity 

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-0.06
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0.08

0.1

X (m)

Y
 (

m
)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

X (m)

Y
 (

m
)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

X (m)

Y
 (

m
)



 25

For this situation with 2 3h r r  , the maximum slider displacement is associated with the 

minimum input angle joint limit: 
 

1
2min

2 3

sin
h

r r
   

   
   max 2 3 2min( )cos( )x r r    

 
Also, the minimum slider displacement is associated with the maximum input angle joint limit: 

 

1 1 2
2max 2 2 2 2

2 3 2 3

cos cos
2

rh

r r r r

  
   
     
       

 1
min 2 2

2 3

tan cos
h

x h
r r


  
   

    
 

 
 
 These equations are easily derived by drawing the limiting cases, drawing the applicable right 
triangles, and using geometry and trigonometry relationships. 
 

In this example, the minimum slider displacement is min 0.032x    m, which occurs at the 

maximum input angle joint limit 2max 139.6   , and the maximum slider displacement is max 0.045x   m, 

which occurs at the minimum input angle joint limit 2min 41.8   .  Note that maxx  and its corresponding 

input angle is identical to the previous example, as derived in the general equations. 
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2 3h r r   

 
This case yields a degenerate slider-crank mechanism as shown below, i.e. it is a structure with no 

motion that can only assemble at 2 2

  .  Zero motion is allowed for the input link and the slider. 

 
In this example, 2 31, 4, 5r r h    cm. 
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2 3r r  

 
Also, 0h  .  At first this case appears to behave as a standard slider-crank mechanism, with: 

 

max 2 3x r r    at  2 0   

 
However, the minimum slider displacement is 0, which occurs for a large range of input angle: 

 

min 0x    for  290 270    

 
That is, we have a degenerate slider-crank mechanism for half the input angle range, 290 270   , 

where links 2 and 3 align completely as shown in a sample snapshot on the left below. 
 

In this example, 2 3 10, 0r r h   , and 5CAr   cm. 

 
Mechanism Degeneracy Snapshot F.R.O.M. 

 
 
 
Slider-Crank Mechanism design irregularities summary 
 

In general, the engineer should avoid all these four strange and fascinating cases in design for high-
speed slider-crank mechanisms.  Possible exceptions: toys or statics-dominated mechanisms such as 
window-closing mechanisms. 
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2.3  Inverted Slider-Crank Mechanism Position Analysis 
 
 This slider-crank mechanism inversion 2 is an inversion of the standard zero-offset slider-crank 
mechanism where the sliding direction is no longer the ground link, but along the rotating link 4.  Ground 
link length r1 and input link length r2 are fixed; r4 is a variable.  The slider link 3 is attached to the end of 
link 2 via an R joint and slides relative to link 4 via a P joint.  This mechanism converts rotary input to 
linear motion and rotary motion output.  Practical applications include certain doors/windows 
opening/damping mechanisms.  The inverted slider-crank is also part of quick-return mechanisms. 
 
 
Step 1.  Draw the Kinematic Diagram 
 

 
 

 r1   constant ground link length  2   variable input angle 
 r2   constant input link length   4   variable output angle 
 r4   variable output link length  L4   constant total output link length 
 
 
Link 1 is the fixed ground link.  Without loss of generality we may force the ground link to be horizontal.  
If it is not so in the real world, merely rotate the entire inverted slider-crank mechanism so it is horizontal.  
Both angles 2 and 4 are measured in a right-hand sense from the horizontal to the link. 
 
 
Step 2.  State the Problem 
 
 Given  r1, 1 = 0, r2; plus 1-dof position input 2 
 
 Find  r4 and 4 
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Step 3.  Draw the Vector Diagram.  Define all angles in a positive sense, measured with the right hand 
from the right horizontal to the link vector (tail-to-head; your right-hand thumb is located at the vector 
tail). 
 

 
 
Step 4.  Derive the Vector-Loop-Closure Equation. Starting at one point, add vectors tail-to-head until 
you reach a second point.  Write the VLCE by starting and ending at the same points, but choosing a 
different path. 
 

2 1 4r r r   
 
 
Step 5.  Write the XY Components for the Vector-Loop-Closure Equation.  Separate the one vector 
equation into its two X and Y scalar components. 
 

2 2 1 4 4

2 2 4 4

r c r r c

r s r s

 


 

 
 
Step 6. Solve for the Unknowns from the XY equations.  There are two coupled nonlinear equations in 
the two unknowns r4, 4.  Unlike the standard slider-crank mechanism, there is no decoupling of X and Y.  
However, unlike the four-bar mechanism, there is only one unknown angle so the solution is easier than 
the four-bar mechanism.  First rewrite the above XY equations to isolate the unknowns on one side. 
 

4 4 2 2 1

4 4 2 2

r c r c r

r s r s

 


 

 
A ratio of the Y to X equations will cancel r4 and solve for 4. 
 

4 4 2 2

4 4 2 2 1

r s r s

r c r c r



 

 
4 2 2 2 2 1a tan 2 ( , )r s r c r    

 
Then square and add the XY equations to eliminate 4 and solve for r4. 
 

2 2
4 1 2 1 2 22r r r rrc    

  

2

1

4
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Note the same r4 formula results from the cosine law.  Alternatively, the same r4 can be solved from either 
the X or Y equations after is 4 known. 
 

X) 2 2 1
4

4

r c r
r

c


    Y) 2 2

4
4

r s
r

s
  

 
Both of these r4 alternatives are valid; however, each is subject to a different artificial mathematical 
singularity ( 4 90     and 4 0,180   , respectively), so only the former square-root formula should be 

used for r4, which has no artificial singularity.  The X algorithmic singularity 4 90     never occurs unless 

2 1r r , which is to be avoided (see below), but the Y algorithmic singularity occurs twice per full range 

of motion. 
 

 Technically there are two solution sets – the one above and 
2 2

4 1 2 1 2 22r r r rrc   , 4  .  

However, the negative r4 is not practical and so only the one solution set (branch) exists, unlike most 
planar mechanisms with two or more branches. 
 
 
Full-rotation condition 
 
 For the inverted slider-crank mechanism to rotate fully, the fixed length of link 4, L4, must be 
greater than the maximum value of the variable r4. 
 
 
Slider Limits 
 
 The slider reaches its minimum and maximum displacements when 2 = 0 and , respectively.  
Therefore, the slider limits are 1 2 4 1 2r r r r r    .  Thus, the fixed length L4 must be greater than 1 2r r .  

In addition we require 1 2r r  for full rotation. 
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Graphical Solution 
 

The Inverted Slider-Crank mechanism position analysis may be solved graphically, by drawing 
the mechanism, determining the mechanism closure, and measuring the unknowns.  This is an excellent 
method to validate your computer results at a given snapshot. 
 

 Draw the known ground link (points O2 and O4 separated by r1 at the fixed angle 1 = 0). 

 Draw the given input link length r2 at the given angle 2 (this defines point A). 

 Draw a line from O4 to point A. 

 Measure the unknown values of r4 and 4. 
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Inverted Slider-Crank Mechanism Position Analysis:  Term Example 3 
 Given: 

1

2

4

1

0.20

0.10

0.32

0

r

r

L







 

  m 

 
Snapshot Analysis (one input angle) 
 Given this mechanism and 

2 7 0   , calculate 4 and r4. 

 
4 (deg) r4 (m) 

150.5 0.191 

 
This Term Example 3 position solution is demonstrated in the figure below. 

 

 
 

Term Example 3 Position Snapshot 
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Full-Range-Of-Motion (F.R.O.M.) Analysis:  Term Example 3 
 A more meaningful result from position analysis is to report the position analysis unknowns for 
the entire range of mechanism motion.  The subplots below gives r4 (m) and 4 (deg), for all 20 360  

, for Term Example 3. 
 

 
Term Example 3 4 and r4 



4 varies symmetrically about 1 8 0  , being 1 8 0   at 2 0,180,360   .  r4 varies like a negative cosine 

function with minimum displacement 1 2 0.1r r   at 2 0,360    and maximum displacement 1 2 0.3r r 

.  Since r1 is twice r2 in this example, whenever 2 60,300   , a perfect 30 60 90     triangle is formed; 

the relative angle between links 2 and 4 is 9 0   which corresponds to the max and min of 4 150, 210   , 

respectively.  At these special points, 4 ( 3 2)0.2 0.173r    m. 

 

 There is another right triangle that shows up for 2 90    ; in these cases 2 2
4 0.2 0.1 0.224r     

m and 4 153.4, 206.6   , respectively.  Check all of these special values in the F.R.O.M. plot results. 
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Alternate Inversion-2 Slider Crank Mechanism with r3 Input 
 
 In this subsection we solve the position kinematics for an alternate second-inversion slider-crank 
mechanism.  In this case link 2 is no longer the input, so 2 is no longer given.  Instead, the input is a 
length, called r3, the total variable length between the R joints at the end of link 2 and also at the end of 
the ground link.  This mechanism is used in dump trucks and foot-operated bicycle pumps.  As seen in the 
figure below, this mechanism position analysis requires the intersection of two circles, which the 4-bar 
mechanism also required.  Given r1 and r2 (plus 1 = 0), and input length r3, find 2 and 3. 
 

 
 

The Vector Loop-Closure Equation is: 
 

2 1 3r r r   
 
Length r3 is given, but angles 2 and 3 are unknown.  The X and Y scalar component equations are: 
 

2 2 1 3 3

2 2 3 3

r c r r c

r s r s

 


 

 
These are two coupled nonlinear equations in the two unknowns 2 and 3.  Unlike the standard slider-
crank mechanism, there is no decoupling of X and Y.  However, unlike the four-bar mechanism, there are 
less terms so the solution is easier than the four-bar mechanism.  The above XY equations already have 
unknown 2 isolated.  Now square and add the XY equations to eliminate 2 and solve for 3. 
 

2 2 2 2 2
2 2 1 3 3 1 3 3

2 2 2 2
2 2 3 3

2r c r r c rr c

r s r s

  


 

 
2 2 2 2 2 2 2

2 2 2 1 3 3 3 1 3 3

2 2 2
2 1 3 1 3 3

2 2 2
1 2 1 3

3
1 3

( ) ( ) 2

2

cos
2

r c s r r c s rr c

r r r rr c

r r r

rr
 

    

  

  
  

 
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What about trigonometric uncertainty?  These mechanisms are generally designed to work only in 
one branch, often the + one; so just take the primary inverse cosine solution and the secondary one 
(negative) will not be admissible.  To finish the solution, 
 

1 3 3
2

2

sin
r s

r
   
  

 
 

 
where we must substitute the value of 3 solved above.  Again, trigonometric uncertainty is not a problem; 
just take the primary inverse sine solution.  Certainly, you should validate the correct branch is obtained 
by a graphical solution. 
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2.4  Multi-Loop Mechanism Position Analysis 
 
 Thus far we have presented position analysis for the single-loop four-bar, slider-crank, and 
inverted slider-crank mechanisms.  The position analysis for mechanisms of more than one loop is handled 
using the same general procedures developed for the single loop mechanisms.  A good rule of thumb is to 
look for four-bar (or slider-crank) parts of the multi-loop mechanism as we already know how to solve 
the complete position analyses for these. 
 
 This section presents position analysis for the two-loop Stephenson I six-bar mechanism shown 
below as an example multi-loop mechanism.  This is one of the five possible six-bar mechanisms shown 
in Dr. Bob’s on-line Atlas of Structures, Mechanisms, and Robots: 

ohio.edu/mechanical-faculty/williams/html/PDF/MechanismAtlas.pdf 
 

 
 

Stephenson I 6-Bar Mechanism 
 
 We immediately see that the bottom loop of the Stephenson I six-bar mechanism is identical to our 
standard four-bar mechanism model.  Since we number the links the same as in the four-bar, and if we 
define the angles identically, the position analysis solution is identical to the four-bar presented earlier.  
With the complete position analysis of the bottom loop thus solved, we see that points C and D can be 
easily calculated.  Then the solution for the top loop is essentially another four-bar solution: graphically, 
the circle of radius r5 about point C must intersect the circle of radius r6 about point D to form point E 
(yielding two possible intersections in general).   The analytical solution is very similar to the standard 
four-bar position solution, as we will show. 
 
 For multi-loop mechanisms, the number of solution branches for position analysis increases 
compared to the single-loop mechanisms.  Most single-loop mechanisms mathematically have two 
solution branches.  For multi-loop mechanisms composed of multiple single-loop mechanisms, the 
number of solution branches is 2n, where n is the number of mechanism loops.  For the two-loop 
Stephenson I six-bar mechanism, the number of solution branches for the position analysis problem is 4, 
two from the standard four-bar part, and two for each of these branches from the upper loop. 
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 Now let us solve the position analysis problem for the two-loop Stephenson I six-bar mechanism 
using the formal position analysis steps presented earlier.  Assume link 2 is the input link. 
 
Step 1.  Draw the Kinematic Diagram this is done in the figure above. 

 
 r1    constant ground link length   1   constant ground link angle 
 r2    constant input link length to point A  2   variable input link angle 
 r2a   constant input link length to point C  2   constant angle on link 2 
 r3    constant coupler link length, loop I  3   variable coupler link angle, loop I 
 r4    constant output link length, loop I  4   variable output link angle, loop I 
 r4a   constant input link length to point D  4   constant angle on link 4 
 r5    constant coupler link length, loop II  5   variable coupler link angle, loop II 
 r6    constant output link length, loop II  6   variable output link angle, loop II 
 
As usual, all angles are measured in a right-hand sense from the absolute horizontal to the link, as shown 
in the kinematic diagram. 
 
 
Step 2.  State the Problem 
 
 Given  r1, 1, r2, r3, r4, r2a, r4a, r5, r6, 2, 4; plus 1-dof position input 2 
 
 Find  3, 4, 5, 6 
 
 
Step 3.  Draw the Vector Diagram.  Define all angles in a positive sense, measured with the right hand 
from the right horizontal to the link vector (tail-to-head with the right-hand thumb at the vector tail and 
right-hand fingers towards the arrow in the vector diagram below). 
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Step 4.  Derive the Vector-Loop-Closure Equations. One VLCE is required for each mechanism loop.  
Start at one point, add vectors tail-to-head until you reach a second point.  Write each vector equation by 
starting and ending at the same points, but choosing a different path. 
 

2 3 1 4

2 5 1 4 6a a

r r r r

r r r r r

  

   
 

 
 

Note an alternative to the second vector loop equation is 2 5 3 4 6b br r r r r    .  See if you can identify 

2br  and 4br , plus their angles 2b and 4b. 
 
 
Step 5.  Write the XY Components for each Vector-Loop-Closure Equation.  Separate the two vector 
equations into four XY scalar component equations. 
 

2 2 3 3 1 1 4 4

2 2 3 3 1 1 4 4

r c r c rc r c

r s r s rs r s

  
  

 

 

2 2 5 5 1 1 4 4 6 6

2 2 5 5 1 1 4 4 6 6

a a a a

a a a a

r c r c rc r c r c

r s r s r s r s r s

   

   
 

 

 where  
2 2 2

4 4 4

a

a

  
  

 

 
 

    
 
Step 6. Solve for the Unknowns from the four XY Equations.  The four coupled nonlinear equations in 
the four unknowns 3, 4, 5, 6 can be solved in two stages, one for each mechanism loop. 
 

Loop I. This solution is identical to the standard four-bar mechanism solution for 3, 4, 
summarized here from earlier.  From the first two XY scalar equations above, isolate 3 terms, square and 
add both equations to obtain one equation in one unknown 4. This equation has the form 

4 4cos sin 0E F G    , where terms E, F, and G are known functions of constants and the input angle 

2.  Solve this equation for two possible values of 4 using the tangent half-angle substitution.  The two 
4 values correspond to the open and crossed branches.  Then return to the original XY scalar equations 
with 3 terms isolated, divide the Y by the X equations, and solve for 3 using the atan2 function, 
substituting the solved values for 4.  One unique 3 will result for each of the two possible 4 values. 
 

Loop II. The method is analogous to the Loop I solution above.  Since 4 is now known, we also 
know 4 4 4a    .  From the second two XY scalar equations above, isolate 5 terms, square and add both 

equations to obtain one equation in one unknown 6.  This equation is of the form 

2 6 2 6 2cos sin 0E F G    , where terms E2, F2, and G2 are known functions of constants and the known 

angles 2 2 2a     and 4 4 4a    .  Solve this equation for two possible values of 6 using the tangent 
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half-angle substitution.  The two 6 values correspond to open and crossed branches, for each of the Loop 
I open and crossed branches.  Then return to the original XY scalar equations with 5 terms isolated, divide 
the Y by the X equations, and solve for 5 using the atan2 function, substituting the solved values for 6.  
One unique 5 will result for each of the two possible 6 values from each 4. 
 

Branches. There are two 5, 6 branches for each of the two 3, 4 branches, so there are four 
overall mechanism branches for the two-loop Stephenson I six-bar mechanism. 
 
 
Full-rotation condition 
 
 The range of motion of a multi-loop mechanism may be more limited than that of single-loop 
mechanisms.  One can perform a compound Grashof analysis when four-bars are the component 
mechanisms.  For the two-loop Stephenson I six-bar mechanism, the second loop may constrain the first 
loop (e.g. it may change an expected crank motion of the input link to a rocker).  This is an important issue 
in design of multi-loop mechanisms if the input link must still rotate fully. 
 
 
Graphical Solution 
 
 The two-loop Stephenson I six-bar mechanism position analysis may readily be solved 
graphically, by drawing the mechanism, determining the mechanism closure, and measuring the 
unknowns.  This is an excellent method to validate your computer results at a given snapshot. 
 
Loop I (this part is identical to the standard four-bar graphical solution) 

 Draw the known ground link (points O2 and O4 separated by r1 at the fixed angle 1). 
 Draw the given input link length r2 at the given angle 2 to yield point A. 
 Draw a circle of radius r3, centered at point A. 
 Draw a circle of radius r4, centered at point O4. 
 These circles intersect in general in two places to yield two possible points B. 
 Connect the two branches and measure the unknown angles 3 and 4. 

 
Loop II (this part is a modification of the standard four-bar graphical solution).  Start with the end of the 
procedure above, on the same drawing.  For each solution branch above, perform the following steps. 

 Draw the link r2a at angle 2 2 2a     from point O2. 

 Draw the link r4a at angle 4 4 4a     from point O4. 

 Draw a circle of radius r5, centered at point C. 
 Draw a circle of radius r6, centered at point D. 
 These circles intersect in general in two places to yield two possible points E. 
 Connect the two branches and measure the unknown values 5 and 6. 

 
In general, there are four overall position solution branches. 
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3.  Velocity Kinematics Analysis 
 
3.1  Velocity Analysis Introduction 
 
 Here are a couple of fun scalar velocity problems involving average speed, time, and distance to 
get started with. 
 

1. A cyclist travels uphill at a constant speed of 20 kph for 30 min; then the cyclist travels downhill 
at a constant speed of 60 kph for the next 30 min.  What is the cyclist’s average speed for this 
motion? 

 
Solution: 

  uphill:  20kph 0.5hr 10km   

  downhill: 60kph 0.5hr 30km   

  total:  40km 1hr 40kph   
 
This answer is obvious, no? (i.e. the simple average of 20 and 60 kph)  But how does the problem change 
if the distances are the same for both portions of the motion, rather than the times being the same as above? 
 

2. A cyclist travels uphill at a constant speed of 20 kph for 10 km; then the cyclist travels downhill 
at a constant speed of 60 kph for the next 10 km.  What is the cyclist’s average speed for this 
motion? 

 
Solution: 

  uphill:  
hr 1

10 km hr
20 km 2

   

  downhill: 
hr 1

10 km hr
60 km 6

   

  total:  
2

20 km hr 30 kph
3

   

 
So the cyclist travels slower than the simple average when the distances are the same for both portions of 
the motion, rather than the times being the same.  This phenomenon is called the Harmonic Mean of 
Velocity.  The Harmonic Mean of a set of numbers is the inverse of the simple average of the inverse 
numbers of that set.  For our second example, if a distance is covered at speed 1v  and the same distance 

is then covered at speed 2v , the Harmonic Mean applies to calculate average speed: 

 

1 2

1 1 1avg

n

n
v

v v v


  

   1 2

1 2

1 2

22
1 1avg

v v
v

v v
v v

 


 

 

For the numerical example:  
2(20)(60)

30 kph
20 60avgv  


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 The plot above shows the average speed avgv  for various downhill speeds 2v  in this Example 2.  

The numerical result of this example is visible on this graph (i.e. 30 kphavgv  for 2 60 kphv  ).  We 

see that an average speed of 40 kph, as in Example 1, would be out of reach for any real human cyclist 
(off the graph).  In fact, the downhill speed for average speed of 40 kph would have to be 2v   !! (Why?) 

 
  

v av
g
 (

kp
h)



 42

Cyclist Zig-Zagging Uphill 
 
 Often when there is not much traffic, a cyclist will zig-zag up a steep hill in order to reduce strain 
and increase speed.  However, more distance is required, so while the uphill speed will be increased, will 
time actually be saved?  Then we can add a downhill leg with the Harmonic Mean of Velocity, as 
introduced in the previous section.  Will the overall average speed increased or decreased by zig-zagging?  
The current model is intended to investigate this problem and answer some of these questions.  The zig-
zagging parameters are shown in the figure below. 
 

 
 

Parameters for a Cyclist Zig-Zagging Uphill 
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 Assumptions and relationships: 
 

 The hill has a constant uphill grade. 
 The road is perfectly straight. 
 The road is a standard 2-lane highway with a width of 8W   m. 
 The distance travelled on one zig or zag across the road is L. 
 The uphill distance is 1 1 kmd  .  The total distance travelled while zig-zagging is 

*
1 12d NL d  .  The distance travelled straight along the road on one zig-zag is 

1 1D d N . 

 The cyclist maintains a constant uphill speed 1v  (despite continually turning sharp 

corners!). 
 There are no interruptions due to pesky traffic. 
 The cyclist must divide the hill into a perfect N sections for zig-zagging. 
 1v  represents the straight-uphill speed and *

1v  represents the uphill speed with zig-

zagging.  *
1 1v v  

 
First, to eliminate one variable with infinite possibilities, let us determine the angle of zig-zagging 

 to ensure the cyclist divides the hill into N perfect sections, as in the penultimate assumption.  As shown 
in the figure, angle  is measured from the road direction to the direction of the cyclist’s heading when 
zig-zagging.  From geometry we have: 
 

1 1

1

2
tan tan (0.016 )

NW
N

d
   
  

 
 

 
That is, the possible zig-zagging angles are a function of N; the possibilities are plotted below.  This graph 
really should be plotted as a bar graph, since we can only choose integer values of N.  When N is 0, this 
is associated with no zig-zagging (straight up the hill), so the angle  should be 0 as shown.  At the opposite 
extreme, for large integers dividing the hill, the angle approaches 90   .  Of course, if the angle is 

exactly 90   , the cyclist will go nowhere uphill, but the zig-zag becomes a perfect horizontal back-

and-forth.  Arguably an angle near 45    would be a good choice balancing these two extremes.  Let us 
tabulate a few values in that region. 
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N 
61 44.3  
62 44.8  
63 45.2  
64 45.7  

 
For further study in this problem, let us use: 

 
N 
36 29.9  
62 44.8  
108 59.9  

 
Why?  No special reason, other than the human need to force nice angles (essentially 30 ,45 ,60   ).  The 

plots below show some of the other important kinematic parameters ( *
1 1, ,L D d ), in this zone of interest. 

 

 (
de

g)
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The L and 1D  curves cross near N = 108 (because this is closest to 60   ).  The *

1d  curve reveals that 

the actual distance travelled doubles at N = 108 ( 60   ). 
 
 Now let’s a little more Harmonic Mean of Velocity fun, adding a downhill leg 2.  Here are some 
additional assumptions, added to the previous assumptions: 
 

 The hill has a constant downhill grade 
 The road is perfectly straight. 
 The downhill distance is 2 1 kmd  . 

 The cyclist maintains a constant downhill speed 2 50 kphv  . 

 
The speed/distance relationships are: 
 

1 1 1d v t   
* * *
1 1 1d v t   2 2 2d v t  

 
where 1 indicates uphill and 2 indicates downhill.  Again, the asterisk notation indicates the uphill zig-
zagging.  The average speed for the entire uphill and downhill 2 km trip is: 
 

1 2

1 2
avg

d d
v

t t





   

*
* 1 2

*
1 2

avg

d d
v

t t





 

 
Substituting the above relationships and simplifying yields: 

d
is

ta
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m
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km
)



 46

1 2 1

2 1
1

2

( )
avg

d d v
v

d v
d

v





   

* *
* 1 2 1

*
* 2 1
1

2

( )
avg

d d v
v

d v
d

v





 

 
We now plot the average speed results, with 1v  (and *

1v ) as the independent variable, for the three zig-zag 

angle values closest to 30 ,45 ,60  
. 

 

 
 
 At first glance it appears that riding straight uphill is preferred, because that leads to the highest 
average speed for a given 1v . 

 
However, that ignores the fact that *

1 1v v , since zig-zagging leads to a smaller effective slope and 

hence a faster speed.  Looking at *
1 12 kphv   for 59.9   , the same avgv  can be reached by the other 

angle conditions by drawing an horizontal line to the left and projecting down to read the required 1v  for 

that case.  This results (approximately) in average speeds of 12, 10.5, 9.75, and 8.5 kph, respectively. 
 

In reality, that line would be rotated down from horizontal, for example passing through the 
magenta curve at 12 kph and the red curve at 6 kph. 

 
To determine the optimal zig-zag angle  would require knowledge of the function relating slope 

and uphill speed, which is not known, and hence not included in this analysis. 
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3.5  Inverted Slider-Crank Mechanism Velocity Analysis 
 
 Again, link 2 (the crank) is the input and link 4 is the output.  Remember r4 is a variable so 

4 0r   

in this problem. 
 
Step 1. The inverted slider-crank mechanism Position Analysis must first be complete. 
 
 Given r1, 1 = 0, r2, and 2, we solved for r4 and 4 
 
 
Step 2.  Draw the inverted slider-crank mechanism Velocity Diagram. 
 

 
 
where i  (i = 2,4) is the absolute angular velocity of link i.  4r  is the slider velocity along link 4.  3 4   

since the slider cannot rotate relative to link 4. 
 
 
Step 3.  State the Problem 
 
 Given  the mechanism r1, 1 = 0, r2 

 
the position analysis 2, r4, 4 

 
1-dof of velocity input 2 

 
 

Find  the velocity unknowns 4r  and 4 
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Step 4.  Derive the velocity equations.  Take the first time derivative of the vector loop closure equations 
from position analysis, in XY component form. 
 

Here are the inverted slider-crank mechanism position equations from earlier. 

2 1 4

2 2 1 4 4

2 2 4 4

r r r

r c r r c

r s r s

 

 


 

 
The first time derivative of the position equations is given below. 

2 2 2 4 4 4 4 4

2 2 2 4 4 4 4 4

r s r c r s

r c r s r c

 
 

  
 


  

 
These two linear equations in two unknowns can be written in matrix form. 

4 4 4 4 2 2 2

4 4 4 4 2 2 2

c r s r r s

s r c r c


 

      
    

     


 

 
 
Step 5.  Solve the velocity equations for the unknowns 4 4,r  . 

 

2 2 2 4 2 4
4 4 4 4 4 2 2 2

2 2 2 4 2 4
4 4 4 2 2 24

4

2 2 4 2
4

2 2 4 2
4

4

( )
1

( )

sin( )

cos( )

r s c c s
r r c r s r s

r s s c c
s c r cr

r

r
r

r

r





 

  
  



  
                       

 
       
    





 

 
 
where we have used the trigonometric identities: 

 
 

cos cos cos sin sin

sin sin cos cos sin

a b a b a b

a b a b a b

 

  


   

sin( ) sin( )

cos( ) cos( )

a a

a a

  
 

 

 
The units are all correct in the solution above, m/s and rad/s, respectively. 
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Inverted slider-crank mechanism singularity condition 
 When does the solution fail?  This is an inverted slider-crank mechanism singularity, when the 
determinant of the coefficient matrix goes to zero.  The result is dividing by zero, resulting in infinite 

4 4,r  . 

 

  4 4 4

4 4 4

c r s
A

s r c

 
  
 

 

 
2 2 2 2

4 4 4 4 4 4 4 4( ) ( ) 0A r c r s r c s r        

 
Physically, assuming 

1 2r r  as in the full rotation condition from the inverted slider-crank mechanism 

position analysis, this is impossible, i.e. r4 never goes to zero. 

 This matrix determinant 4A r  was used in the solution of the previous page. 

 
 
 
 
Inverted slider-crank mechanism velocity example – Term Example 3 continued 
 

Given 

1

2

4

1

0.20

0.10

0.32

0

r

r

L







 

 (m)   

2

4

4

70

150.5

0.191r












  (deg and m) 

 
Snapshot Analysis 

 Given this mechanism position analysis plus 2 25   rad/s, calculate 4 4,r   for this snapshot. 

4

4

0.870 0.094 2.349

0.493 0.166 0.855

r


      

        


 

 

4

4

2.47

2.18

r


   

   
  


  (m/s and rad/s) 

 
Both are positive, so the slider link 3 is currently traveling up link 4 and link 4 is currently rotating in the 
ccw direction, which makes sense from the physical problem. 
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Full-Range-Of-Motion (F.R.O.M.) Analysis – Term Example 3 continued 
 
 A more meaningful result from velocity analysis is to report the velocity analysis results for the 

entire range of mechanism motion.  The subplot below gives 4 (top, rad/s) and 4r  (bottom, m/s), for all 

20 3 6 0   , for Term Example 3.  Since 2 is constant, we can plot the velocity results vs. 2 (since it 

is related to time t via 2 2t  ). 

 

 
 

Term Example 3 F.R.O.M., 4 and 4r  

 
As expected, 4 is zero at the max and min for 4 (at  

2 60    ); also, 4 has a large range of nearly 

constant positive velocity near the middle of motion – this can be seen in a MATLAB animation.  4r  is 

zero at the beginning, middle, and end of motion and is max at 
2 60    . 
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3.6  Multi-Loop Mechanism Velocity Analysis 
 
 Thus far we have presented velocity analysis for the single-loop four-bar, slider-crank, and 
inverted slider-crank mechanisms.  The velocity analysis for mechanisms of more than one loop is handled 
using the same general procedures developed for the single loop mechanisms. 
 
 This section presents velocity analysis for the two-loop Stephenson I six-bar mechanism shown 
below as an example multi-loop mechanism.  It follows the position analysis for the same mechanism 
presented earlier. 
 

 
 

Stephenson I 6-Bar Mechanism 
 
 The bottom loop of the Stephenson I six-bar mechanism is identical to the standard four-bar 
mechanism model and so the velocity analysis solution is identical to the four-bar presented earlier.  With 
the complete velocity analysis of the bottom loop thus solved, the solution for the top loop is essentially 
another four-bar velocity solution. 
 
 As in all velocity analysis, the velocity solution for multi-loop mechanisms is a linear analysis 
yielding a unique solution (assuming the given mechanism position is not singular) for each position 
solution branch considered.  The position analysis must be complete prior to the velocity solution. 
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 Now let us solve the velocity analysis problem for the two-loop Stephenson I six-bar mechanism 
using the formal velocity analysis steps presented earlier.  Again, assume link 2 is the input link. 
Step 1. The Stephenson I six-bar mechanism Position Analysis must first be complete. 
 Given r1, 1, r2, r3, r4, r2a, r4a, r5, r6, 2, 4, and 2 we solved for 3, 4, 5, 6. 
 
 
Step 2.  Draw the Stephenson I six-bar mechanism Velocity Diagram. 

This should include all the information from the position diagram, plus the new velocity 
information.  For clarity, we show only the new velocity information here.  Refer to the previous 
Stephenson I position kinematics diagram for complete information. 
 

 
 

where i  (i = 2,3,4,5,6) is the absolute angular velocity of link i.  Triangular links 2 and 4 each have a 

single angular velocity for the whole link.   0ir   for all links since all links are of fixed length (no sliders). 

 
 
Step 3.  State the Problem 
 
 Given  the mechanism r1, 1, r2, r3, r4, r2a, r4a, r5, r6, 2, 4, 
 
   the position analysis 2, 3, 4, 5, 6, 
 

1-dof velocity input 2 

 
Find  the velocity unknowns 3, 4, 5, 6 
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Step 4.  Derive the velocity equations.  Take the first time derivative of each of the two vector loop 
closure equations from position analysis, in XY component form. 
 
Here are the Stephenson I six-bar mechanism position equations. 
 
 Vector equations 

2 3 1 4

2 5 1 4 6a a

r r r r

r r r r r

  

   
 

 
 

 XY scalar equations 

2 2 3 3 1 1 4 4

2 2 3 3 1 1 4 4

r c r c rc r c

r s r s r s r s

  
  

 

 

2 2 5 5 1 1 4 4 6 6

2 2 5 5 1 1 4 4 6 6

a a a a

a a a a

r c r c r c r c r c

r s r s r s r s r s

   
   

 

 

 where  2 2 2

4 4 4

a

a

  
  

 
 

 

    
 

 The first time derivatives of the Loop I position equations are identical to those for the standard 
four-bar mechanism. 

2 2 2 3 3 3 4 4 4

2 2 2 3 3 3 4 4 4

r s r s r s

r c r c r c

  
  

   
 

 

 
 These equations can be written in matrix form. 

3 3 4 4 3 2 2 2

3 3 4 4 4 2 2 2

r s r s r s

r c r c r c

 
 

      
         

 

 
 The first time derivative of the Loop II position equations is 

2 2 2 5 5 5 4 4 4 6 6 6

2 2 2 5 5 5 4 4 4 6 6 6

a a a a a a

a a a a a a

r s r s r s r s

r c r c r c r c

   
   

    
  

 

 
 These equations can be written in matrix form. 

5 5 6 6 5 2 2 2 4 4 4

5 5 6 6 6 2 2 2 4 4 4

a a a a

a a a a

r s r s r s r s

r c r c r c r c

  
  

       
          

 

 

 where we have used  2 2

4 4

a

a

 
 




 since 2 and 4 are constant angles.  
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Step 5.  Solve the velocity equations for the unknowns 3, 4, 5, 6. 
 
 The two mechanism loops decouple so we find 3 and 4 from Loop I first and then use 4 to find 
5 and 6 from Loop II.  The solutions are given below. 
 
 Loop I (identical to the standard four-bar mechanism) 
 

1

3 3 4 43 2 2 2

3 3 4 44 2 2 2

r s r s r s

r c r c r c

 
 

     
        

 

 
 
 Loop II (similar to the standard four-bar mechanism) 
 

1

5 5 5 6 6 2 2 2 4 4 4

6 5 5 6 6 2 2 2 4 4 4

a a a a

a a a a

r s r s r s r s

r c r c r c r c

  
  

       
          

 

 
 
Remember, Gaussian elimination is more efficient and robust than the matrix inverse.  Also, these 
equations may be solved algebraically instead of using matrix methods to yield the same answers. 
 
 
 
Stephenson I six-bar mechanism singularity condition 
 
 The velocity solution fails when the determinant of either coefficient matrix above goes to zero.  
The result is dividing by zero, resulting in infinite angular velocities for the associated loop. 
 
 For the first loop, the singularity condition is identical to the singularity condition of the standard 
four-bar mechanism, i.e. when links 3 and 4 either line up or fold upon each other, causing a link 2 joint 
limit.  For the second loop, the singularity condition is similar, occurring when links 5 and 6 either line 
up or fold upon each other.  These conditions also cause angle limit problems for the position analysis, so 
the velocity singularities are known problems. 
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4.  Acceleration Kinematics Analysis 
 
4.2  Five-Part Acceleration Formula 
 We can derive the Five-Part Acceleration Formula using vectors and vector derivation.  In order 
to do this we need the Transport Theorem (for kinematics, not the Reynolds Transport Theorem from 
fluid mechanics).  The Transport Theorem states that to take the time derivative of a vector in a rotating 
coordinate frame, we must take the time derivative of the vector within the frame, and then add  cross 
the original vector, where  is the angular velocity vector of the rotating frame.  The kinematic diagram 
for the 4-dof moving link with sliding collar is identical to that in the ME 3011 NotesBook, Section 4.2. 
 
 Below the use of the Transport Theorem is highlighted in RED font. 
 
Two-Part Position Formula: 

0PP P L   

 
Three-Part Velocity Formula: 

0

0

( )P

P

d
V P L

dt

V LV V 

 

  

 

 
Five-Part Acceleration Formula: 

0

0

0

0

( )

( )

2 ( )

P

P

P

P

d
A V V L

dt

A A A L L

A A A L V

A

V

V L

A A V L L



 



 

 

   

 

 

   

     

     

       








 

 
We can carry on this example to one more time derivative to find the vector jerk expression. 
 
Eight-Part Jerk Formula: 

0

0

0

0

( 2 ( ))

2 2 ( ) ( ) ( )

2 2 ( ) ( ) 2 ( ) ( ( ))

3 3 3 ( ) 3 ( ) ( ( ))

P

P

P

P

d
J A A V L L

dt

J J J V V L L L L L

J J J V

A

A L V L V

J J J

A V L L

A V V L L L



   

   

         

       

         

        

                  

               

 

             

       

   

  
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4.5  Inverted Slider-Crank Mechanism Acceleration Analysis 
 
 Again, link 2 (the crank) is the input and link 4 is the output. 
 
Step 1. The inverted slider-crank mechanism Position and Velocity Analyses must first be complete. 
 

 Given r1, 1 = 0, r2, and 2 we solved for r4 and 4; then given 2 we solved for 4r  and 4. 

 
 
Step 2.  Draw the inverted slider-crank mechanism Acceleration Diagram. 
 

 
 

where i  (i = 2,4) is the absolute angular acceleration of link i.  4r  is the slider acceleration along link 4.  

3 4   since the slider cannot rotate relative to link 4. 

 
 
Step 3.  State the Problem 
 
 Given  the mechanism r1, 1 = 0, r2 
 

the position analysis 2, r4, 4 
 

the velocity analysis 2, 4r , 4 

 
1-dof acceleration input 2 
 
 

Find  the acceleration unknowns 4r  and 4 
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Step 4.  Derive the acceleration equations.  Take the first time derivative of the inverted slider-crank 
mechanism velocity equations from velocity analysis, in XY component form. 
 

Here are the inverted slider-crank mechanism velocity equations. 
 

4 4 4 4 4 2 2 2

4 4 4 4 4 2 2 2

r c r s r s

r s r c r c

 
 

  
 




 

 
The first time derivative of the velocity equations is given below. 

2 2
4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2

2 2
4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2

2

2

r c r s r s r c r s r c

r s r c r c r s r c r s

    

    

     

    

 
 

 

 
 These equations can be written in matrix form. 

2 2
4 4 4 4 2 2 2 2 2 2 4 4 4 4 4 4

2 2
4 4 4 4 2 2 2 2 2 2 4 4 4 4 4 4

2

2

c r s r r s r c r s r c

s r c r c r s r c r s

   
    

        
            

 


 

 
 

Step 5.  Solve the acceleration equations for the unknowns 4 4,r  . 

 
2 2

4 4 4 4 4 2 2 2 2 2 2 4 4 4 4 4 4
2 2

4 4 44 2 2 2 2 2 2 4 4 4 4 4 4

2 2
4 2 2 4 2 2 2 4 2 4 4

2
4 2 2 4 2 2 2 4 2 4 4

4

21

2

sin( ) cos( )

cos( ) sin( ) 2

r r c r s r s r c r s r c

s cr r c r s r c r s

r r r r

r r r

r

   
    

      

       

       
            


          

      

 








 


 
 
  

 

 
where we have again used the trigonometric identities: 
 

 
 

cos cos cos sin sin

sin sin cos cos sin

a b a b a b

a b a b a b

 

  


   

sin( ) sin( )

cos( ) cos( )

a a

a a

 
 

 

 
 
 A major amount of algebra and trigonometry is required to get the final analytical solution for 

4 4,r   above.  Interestingly, the link 4 Coriolis term 
4 42 r   cancelled in 4r  while the link 4 centripetal 

term 2
4 4r   cancelled in 4.  The units are all correct, m/s2 and rad/s2, respectively. 

 
 



 58

Inverted slider-crank mechanism singularity condition 
 
 The acceleration problem has the same coefficient matrix [A] as the velocity problem, so the 
singularity condition is identical (see the singularity discussion in the inverted slider-crank mechanism 

velocity section – the only singularity is when r4 goes to zero; this will never to occur if 1 2r r ). 

 
 
 
Inverted slider-crank mechanism acceleration example – Term Example 3 continued 
 

Given 

1

2

4

1

0.20

0.10

0.32

0

r

r

L







 

 (m)  

2

4

4

70

150.5

0.191r












  (deg and m) 

2

4

4

25

2.47

2.18

r









  (rad/s and m/s) 

 
 
 
Snapshot Analysis 
 

 Given this mechanism position and velocity analyses, plus 2 0   rad/s2, calculate 4 4,r   for this 

snapshot. 
 

4

4

0.870 0.094 16.873

0.493 0.166 48.957

r


      

         


 

 

4

4

9.46

267.14

r


   

   
  


  (m/s2 and rad/s2) 

 
 

4r  is negative, so the slider link 3 is currently slowing down its positive velocity up link 4 and 4 is 

positive, so the link 4 angular velocity is currently increasing in the ccw direction. 
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Full-Range-Of-Motion (F.R.O.M.) Analysis – Term Example 3 continued 
 
 A more meaningful result from acceleration analysis is to report the acceleration analysis results 

for the entire range of mechanism motion.  The subplot below gives 4 (top, rad/s2) and 4r  (bottom, m/s2), 

for all 
20 3 6 0   , for Term Example 3.  Again, since 2 is constant, we can plot the acceleration results 

vs. 2 (since it is related to time t via 2 2t  ). 

 

 
 

Term Example 3 F.R.O.M., 4 and 4r  

 
As expected, 4 is zero at the beginning, middle, and end since the 4 curve flattens out at those 

points.  The maximum (and minimum) 4 values correspond to the greatest slopes for 4.  4r  is maximum 

(and minimum) at the beginning, middle, and end since the 4r  curve is steepest at those points; 4r  is zero 

when the 4r  curve is flat, i.e. 
2 60    . 
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 Derivative/Integral Relationships 
 
 When one variable is the derivative of another, recall the relationships from calculus (the derivative 
is the slope of the above curve at each point; the integral is the area under the curve up to that point, taking 
into account the initial value).  For example: 
 

4
4

( )
( )

d t
t

dt

     4 40 4( ) ( )t t dt      

 

4
4

( )
( )

d t
t

dt

     4 40 4( ) ( )t t dt      
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4
4

( )
( )

dr t
r t

dt
    4 40 4( ) ( )r t r r t dt     

 

4
4

( )
( )

dr t
r t

dt

    4 40 4( ) ( )r t r r t dt      

 

 
 
These plots are all from Term Example 3. 
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4.6  Multi-Loop Mechanism Acceleration Analysis 
 
 Thus far we have presented acceleration analysis for the single-loop four-bar, slider-crank, and 
inverted slider-crank mechanisms.  The acceleration analysis for mechanisms of more than one loop is 
handled using the same general procedures developed for the single loop mechanisms. 
 
 This section presents acceleration analysis for the two-loop Stephenson I six-bar mechanism 
shown below as an example multi-loop mechanism.  It follows the position and velocity analyses for the 
same mechanism presented earlier. 
 

 
 

Stephenson I 6-Bar Mechanism 
 
 The bottom loop of the Stephenson I six-bar mechanism is identical to the standard four-bar 
mechanism model and so the acceleration analysis solution is identical to the four-bar presented earlier.  
With the complete acceleration analysis of the bottom loop thus solved, the solution for the top loop is 
essentially another four-bar acceleration solution. 
 
 As in all acceleration analysis, the acceleration solution for multi-loop mechanisms is a linear 
analysis yielding a unique solution (assuming the given mechanism position is not singular) for each 
solution branch considered.  The position and velocity analyses must be complete prior to the acceleration 
solution. 



 63

 Now let us solve the acceleration analysis problem for the two-loop Stephenson I six-bar 
mechanism using the formal acceleration analysis steps presented earlier.  Again, assume link 2 is the 
input link. 
 
 
Step 1. The Stephenson I six-bar mechanism Position and Velocity Analyses must first be complete. 
 Given r1, 1, r2, r3, r4, r2a, r4a, r5, r6, 2, 4, 2, and 2, we solved for 3, 4, 5, 6, 3, 4, 5, 6. 
 
 
Step 2.  Draw the Stephenson I six-bar mechanism Acceleration Diagram. 

This should include all the information from the position and velocity diagrams, plus the new 
acceleration information.  For clarity, we show only the new acceleration information here.  Refer to the 
previous Stephenson I position and velocity kinematics diagrams for complete information. 
 

 
 

where i  (i = 2,3,4,5,6) is the absolute angular acceleration of link i.  Triangular links 2 and 4 each have 

a single angular acceleration for the whole link.   0ir   for all links since all links are of fixed length (no 

sliders). 
 
 
Step 3.  State the Problem 
 
 Given  the mechanism r1, 1, r2, r3, r4, r2a, r4a, r5, r6, 2, 4, 
   the position analysis 2, 3, 4, 5, 6, 

the velocity analysis 2, 3, 4, 5, 6, 
1-dof acceleration input 2 
 

Find  the acceleration unknowns 3, 4, 5, 6 
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Step 4.  Derive the acceleration equations.  Take the first time derivative of both sides of each of the 
four scalar XY velocity equations. 
 
The Stephenson I six-bar mechanism velocity equations are given below. 
 
 XY scalar velocity equations 

2 2 2 3 3 3 4 4 4

2 2 2 3 3 3 4 4 4

r s r s r s

r c r c r c

  
  

   
 

 

 

2 2 2 5 5 5 4 4 4 6 6 6

2 2 2 5 5 5 4 4 4 6 6 6

a a a a a a

a a a a a a

r s r s r s r s

r c r c r c r c

   
   

    
  

 

 

  where  2 2 2

4 4 4

a

a

  
  

 
 

 

 
 

 The first time derivative of the Loop I velocity equations is identical to that for the standard four-
bar mechanism. 
 

2 2 2
2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

2 2 2
2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

r s r c r s r c r s r c

r c r s r c r s r c r s

     

     

      

    
 

 
 These equations can be written in matrix form. 
 

2 2 2
3 3 4 4 3 2 2 2 2 2 2 3 3 3 4 4 4

2 2 2
3 3 4 4 4 2 2 2 2 2 2 3 3 3 4 4 4

r s r s r s r c r c r c

r c r c r c r s r s r s

    
    

        
           

 

 
 The first time derivatives of the Loop II velocity equations are: 
 

2 2 2 2
2 2 2 2 2 2 5 5 5 5 5 5 4 4 4 4 4 4 6 6 6 6 6 6

2 2 2 2
2 2 2 2 2 2 5 5 5 5 5 5 4 4 4 4 4 4 6 6 6 6 6 6

a a a a a a a a a a a a

a a a a a a a a a a a a

r s r c r s r c r s r c r s r c

r c r s r c r s r c r s r c r s

       

       

        

      
 

 
 These equations can be written in matrix form. 
 

2 2 2 2
5 5 6 6 5 2 2 2 2 2 2 5 5 5 4 4 4 4 4 4 6 6 6

2 2 2 2
5 5 6 6 6 2 2 2 2 2 2 5 5 5 4 4 4 4 4 4 6 6 6

a a a a a a a a

a a a a a a a a

r s r s r s r c r c r s r c r c

r c r c r c r s r s r c r s r s

      
      

          
              

 

 

 where we have used  2 2

4 4

a

a

 
 




 and 2 2

4 4

a

a

 
 




 since 2 and 4 are constant angles.  
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Step 5.  Solve the acceleration equations for the unknowns 3, 4, 5, 6. 
 
 The two loops decouple so we find 3 and 4 from Loop I first and then use 4 to find 5 and 6 
from Loop II.  The solutions are given below. 
 
 Loop I (identical to the standard four-bar mechanism) 
 

1 2 2 2
3 3 4 43 2 2 2 2 2 2 3 3 3 4 4 4

2 2 2
3 3 4 44 2 2 2 2 2 2 3 3 3 4 4 4

r s r s r s r c r c r c

r c r c r c r s r s r s

    
    

       
            

 

 
 
 Loop II (similar to the standard four-bar mechanism) 
 

1 2 2 2 2
5 5 5 6 6 2 2 2 2 2 2 5 5 5 4 4 4 4 4 4 6 6 6

2 2 2 2
6 5 5 6 6 2 2 2 2 2 2 5 5 5 4 4 4 4 4 4 6 6 6

a a a a a a a a

a a a a a a a a

r s r s r s r c r c r s r c r c

r c r c r c r s r s r c r s r s

      
      

          
              

 

 
 
Remember, Gaussian elimination is more efficient and robust than the matrix inverse.  Also, these 
equations may easily be solved algebraically instead of using matrix methods. 
 
 
Stephenson I six-bar mechanism singularity condition 
 
 The acceleration solution fails when the determinant of either coefficient matrix above goes to 
zero.  The result is dividing by zero, resulting in infinite angular accelerations for the associated loop.  
Note the two coefficients matrices in the acceleration solutions are identical to those for the velocity 
solutions.  Therefore, the acceleration singularity conditions are identical to the velocity singularity 
conditions. 
 
 For the first loop, the singularity condition is identical to the singularity condition of the standard 
four-bar mechanism, i.e. when links 3 and 4 either line up or fold upon each other, causing a link 2 joint 
limit.  For the second loop, the singularity condition is similar, occurring when 5 and 6 either line up or 
fold upon each other.  These conditions also cause problems for the velocity and position analyses, so the 
acceleration singularities are known problems. 
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5.  Other Kinematics Topics 
 
5.4  Branch Symmetry in Kinematics Analysis 
 
 We have been doing F.R.O.M. analysis for the open-branch only (four-bar mechanism) and the 
right-branch only (slider-crank mechanism).  What do the kinematics results look like for the crossed and 
left branches?  Are there any relationships amongst the various analyses for the two branches?  The reader 
is left to draw their own conclusions. 
 
5.4.1  Four-Bar Mechanism 

Given:   

1

2

3

4

10

4

8

7

r

r

r

r






  

1

3

2

0

4

0

10 (constant)

CAr











 

 
Open Branch     Crossed Branch 
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Open Branch     Crossed Branch 
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5.4.2  Slider-Crank Mechanism 

Given:   2 3 3 22, 6, 0, 3, 0, 10 (constant)CAr r h r         

 
Right Branch     Left Branch 
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 We see a great deal of symmetry for both four-bar and slider crank mechanism kinematic analyses.  

The coupler point curves and all plots have either horizontal midpoint 2 180  
 or vertical zero point flip-

symmetry (some have both). 
 
 However, for the x  and x  slider-crank mechanism results, this symmetry is not immediately 

evident.  This special symmetry is revealed when first cutting the plots at 2 180  
, and then performing 

the horizontal and/or vertical flipping. 
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6.  Inverse Dynamics Analysis 
 
6.1  Dynamics Introduction 
 
D’Alembert’s Principle 
 
 We can convert dynamics problems into statics problems by the inclusion of a vector inertial force 

0 GF m A   and a vector inertial moment 0 GM I  .  Centrifugal force 2mr , directed away from the 

center of rotation, is an example of an inertial force vector.  It’s not really a force but a felt effect of an 
inertia in acceleration.  Using D’Alembert’s principle, the right-hand side of the translational and 
rotational dynamics equations is subtracted to the other side of the equation.  Then the forces and moments 
balance to zero as in statics, when the inertial forces are included in the FBD. 
 

We won’t use this method, but it is mentioned for completeness.  We would instead to prefer to 
consider statics problems as a subset of dynamics problems, with zero accelerations. 
 

0

0

G

O

R mA

R F

 

 
 

 
 

0

0

G

O

T r R I

T r R M

   

   
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6.4  Four-Bar Mechanism Inverse Dynamics Analysis 
 
Four-bar mechanism inverse dynamics matrix equation 

 

21

21

12 12 32 32 32

32

43

23 23 43 43 43

14

14

34 34 14 14 2

1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 0 0 1

0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0

0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0

X

Y

Y X Y X X

Y

X

Y X Y X Y

X

Y

Y X Y X

F

F

r r r r F

F

F

r r r r F

F

F

r r r r 

  
    
   
       

  
 
 

 
    

2 2

2 2

2 2

3 3 3

3 3 3

3 3 3 3 3 3 3

4 4 4

4 4 4

4 4 4 4 4 4 4

( )

( )

( )

G X

G Y

G Z

G X E X

G Y E Y

G Z E X E Y E Y E X E

G X E X

G Y E Y

G Z E X E Y E Y E X E

m A

m A g

I

m A F

m A g F

I r F r F M

m A F

m A g F

I r F r F M







 
   
 
         

        
   

       
       

 

    A v b  

 
Step 6.  Solve for the unknowns (alternate solution) 
 It is possible to partially decouple the solution to this problem1.  If we consider the FBDs of only 
links 3 and 4 first, this is 6 equations in 6 unknowns – this is verified by looking at the original 9x9 matrix 
and noting three 6x1 columns of zeros (1, 2, 9) in rows 4 through 9.  Here is a more efficient solution.  
The reduced 6x6 set of equations for links 3 and 4 are given below. 

 

3 3 332

3 3 332

3 3 3 3 3 3 323 23 43 43 43

4 4 443

14

34 34 14 14 14

1 0 1 0 0 0

( )0 1 0 1 0 0

0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0

G X E xX

G Y E yY

G Z E x E y E y E x EY X Y X X

G X E xY

X

Y X Y X Y

m A FF

m A g FF

I r F r F Mr r r r F

m A FF

F

r r r r F



   
        

                
   
   

      

4 4 4

4 4 4 4 4 4 4

( )G Y E y

G Z E x E y E y E x E

m A g F

I r F r F M

 
 
 
  
 
 
  
 

    

 

 

    34 34 34A v b  

 

Solve for six unknowns      1

34 34 34v A b
  and then use F32X and F32Y in the following 3x3 set of linear 

equations, from the link 2 FBD, very similar to the single rotating link. 
 

21 2 2 32

21 2 2 32

12 12 2 2 2 32 32 32 32

1 0 0

0 1 0 ( )

1

X G X X

Y G Y Y

Y X G Z Y X X Y

F m A F

F m A g F

r r I r F r F 

      
           
           

 

  

 
1 R.L. Williams II, 2009, “Partial Decoupling of the Matrix Method for Planar Mechanisms Inverse Dynamics”, CD 
Proceedings of the ASME International Design Technical Conferences, 33rd Mechanisms and Robotics Conference, Paper # 
DETC2009-87054, San Diego CA, August 30-September 2. 
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We do not need a matrix solution here since the X and Y force equations are decoupled.  The solution is: 
 

21 2 2 32

21 2 2 32

2 2 2 32 32 32 32 12 21 12 21

( )
X G X X

Y G Y Y

G Z Y X X Y Y X X Y

F m A F

F m A g F

I r F r F r F r F 

  
   

    
 

 

Matrix inversion requires approximately 
33

log

n

n
 and Gaussian elimination requires approximately 

2
2( 1)

3

n n
n


  multiplications/divisions2. 

 
 

Number of Multiplications/Divisions for Four-bar Inverse Dynamics Solution 
 

Method Inversion Gaussian Reduction 
9x9 2292 321 86% 
6x6 plus decoupled link 2   840 113 87% 
Reduction in cost 63% 65%  

 
 

There is a substantial 65% reduction in computational cost for Gaussian elimination with the 
6x6 plus decoupled link 2 method.  Also, the numerical accuracy may also improve with this method since 
we needn’t do unnecessary calculations with the three 6x1 columns of zeros. 
 
  

 
2 E.D. Nering, 1974, Elementary Linear Algebra, W.B. Saunders Company, Philadelphia: 38-39. 
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6.5  Slider-Crank Mechanism Inverse Dynamics Analysis 
 
Slider-crank mechanism inverse dynamics matrix equation 
 

21 2 2

21 2 2

3212 12 32 32

32

43

4323 23 43 43

14

2

1 0 1 0 0 0 0 0

( )0 1 0 1 0 0 0 0

0 0 0 1

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1 0

X G X

Y G Y

X GY X Y X

Y

X

YY X Y X

Y

F m A

F m A g

F Ir r r r

F

F

Fr r r r

F


   
      
   
                            

2 2

3 3 3

3 3 3

3 3 3 3 3 3 3

4 4 4

4 4

( )

Z

G X E X

G Y E Y

G Z E X E Y E Y E X E

G X E X

E Y

m A F

m A g F

I r F r F M

m A F

m g F





 
 
 
 
  
   
   
 

 
  

 

 

    A v b  

 
Step 6.  Solve for the unknowns (alternate solution) 
 
 Like the four-bar mechanism, it is possible to partially decouple the solution to this problem1.  If 
we consider the FBDs of only links 3 and 4 first, this is 5 equations in 5 unknowns – this is verified by 
looking at the original 8x8 matrix and noting three 5x1 columns of zeros (1, 2, 8) in rows 4 through 8.  
Here is a more efficient solution.  The reduced 5x5 set of equations for links 3 and 4 are given below. 

 

3 3 332

3 3 332

3 3 3 3 3 3 34323 23 43 43

4 4 443

4 414

1 0 1 0 0

( )0 1 0 1 0

0

0 0 1 0

0 0 0 1 1

G X E xX

G Y E yY

G Z E x E y E y E x EXY X Y X

G X E xY

E yY

m A FF

m A g FF

I r F r F MFr r r r

m A FF

m g FF




    
                      

           
           

 

 

    34 34 34A v b  

 

Solve for five unknowns      1

34 34 34v A b
  and then use F32X and F32Y in the following 3x3 set of linear 

equations, from the link 2 FBD. 
 

21 2 2 32

21 2 2 32

12 12 2 2 2 32 32 32 32

1 0 0

0 1 0 ( )

1

X G X X

Y G Y Y

Y X G Z Y X X Y

F m A F

F m A g F

r r I r F r F 

      
           
           
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We do not need a matrix solution here since the X and Y force equations are decoupled.  The solution is 
identical to that of the four-bar mechanism. 
 

21 2 2 32

21 2 2 32

2 2 2 32 32 32 32 12 21 12 21

( )
X G X X

Y G Y Y

G Z Y X X Y Y X X Y

F m A F

F m A g F

I r F r F r F r F 

  
   

    
 

 

Matrix inversion requires approximately 
33

log

n

n
 and Gaussian elimination requires approximately 

2
2( 1)

3

n n
n


  multiplications/divisions (Nering, 1974). 

 
Number of Multiplications/Divisions for Slider-Crank Inverse Dynamics Solution 

 
Method Inversion Gaussian Reduction 

8x8 1701 232 86% 
5x5 plus decoupled link 2   544 72 87% 
Reduction in cost 68% 69%  

 
 

There is a substantial 69% reduction in computational cost for Gaussian elimination with the 
5x5 plus decoupled link 2 method.  Also, the numerical accuracy may also improve with this method since 
we needn’t do unnecessary calculations with the three 5x1 columns of zeros. 
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6.6  Inverted Slider-Crank Mechanism Inverse Dynamics Analysis 
 
 This problem can be solved with a 9x9 matrix, after eliminating a redundant equation.  Let’s try a 
simpler approach – assume the link 3 mass is small and use only FBDs for links 2 and 4.  We further 
assume zero external forces and moments. 
 
Step 1. The inverted slider-crank Position, Velocity, and Acceleration Analyses must be complete. 
 
 
Step 2.  Draw the Inverted Slider-Crank Mechanism Free-Body Diagrams 
 
 

 
 
 
 
 

i jF  unknown vector internal joint force of link i acting on link j. 

i jr  known vector moment arm pointing to the joint connection with link i from the CG of link j. 
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Step 3.  State the Problem 
 
 Given r1, 1 = 0, r2 

2, r4, 4 

2, 4r , 4 

2, 4r , 4 

assume zero external forces and moments 
 

Find  21F , 42F , 14F  and 2 
 
 
Step 4.  Derive the Newton-Euler Dynamics Equations.   
 

Newton's Second Law 
 
  Link 2 

2 42 21 22 2 GF F F W m A     

 
 
  Link 4 

4 14 42 44 4 GF F F W m A     

 
 

Euler's Rotational Dynamics Equation 
 
  Link 2 

2 42 42 12 212 22G z G ZM r F r F I        

 
 
  Link 4 

4 14 14 24 42 44G z G ZM r F r F I       

 
 
Count the number of unknowns and the number of equations:  6 scalar equations and 7 scalar unknowns.  
We need an additional equation; let us assume zero friction between links 2 and 4. Therefore, 42F  is always 
perpendicular to link 4 and there is only one unknown from this vector, the magnitude F42. 
 

42 42 4
42

42 42 4

cos( 2)

sin( 2)
X

Y

F F
F

F F

 
 

   
       
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Step 5.  Derive the XYZ scalar dynamics equations from the vector dynamics equations. 
 
 Link 2 
 

42 21 2 2

42 21 2 2

2 42 42 42 42 12 21 12 21 2 2

( )

( ) ( )

X X G X

Y Y G Y

X Y Y X X Y Y X G Z

F F m A

F F m A g

r F r F r F r F I 

 

  

    

 

 
 Link 4 
 

 

   

14 42 4 4

14 42 4 4

14 14 14 14 24 42 24 42 4 4

X X G X

Y Y G Y

X Y Y X X Y Y X G Z

F F m A

F F m A g

r F r F r F r F I 

 

  

   

 

 
 
Express these scalar equations in matrix/vector form.  The simplified inverted slider-crank mechanism 
inverse dynamics matrix equation is given below. 
 

2 221

2 221

2 212 12 42 42 42

4 414

4 414

4 424 24 14 14 2

1 0 0 0 0

( )0 1 0 0 0

0 0 1

0 0 1 0 0

( )0 0 0 1 0

0 0 0

G XX

G YY

G ZY X X Y

G XX

G YY

G ZX Y Y X

m Ac F

m A gs F

Ir r r s r c F

m Ac F

m A gs F

Ir s r c r r





     
          
                  

     
    

          






 

 

where:  4

4

cos( 2)

sin( 2)

c

s

 
 

  
      

 

 

    A v b  
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Step 6.  Solve for the unknowns  
The coefficient matrix [A] is dependent on the mechanism geometry (i.e. the angles from the 

position kinematics solution).  The right-hand-side vector {b} is dependent on inertial terms and gravity. 
 

Matrix/vector solution       1
v A b

  

 
 MATLAB v = inv(A)*b; % Solution via matrix inverse 
 
Using Gaussian elimination is more efficient and robust. 
 
 MATLAB v = A\b;  % Solution via Gaussian elimination 
 
The solution to the internal forces and input torque are contained in the components of v.  To save these 
values for later plotting, use the following MATLAB code, inside the i loop. 
 
   f21x(i) = v(1); 
   f21y(i) = v(2); 
        
   tau2(i) = v(6); 
 
 Like the four-bar and slider-crank mechanisms, it is possible to partially decouple the solution to 
this problem.  If we consider the FBDs of only 4 first, this is 3 equations in 3 unknowns – this is verified 
by looking at the original 6x6 matrix and noting three 3x1 columns of zeros (1, 2, 6) in rows 4 through 6.  
Here is a more efficient solution.  The reduced 3x3 set of equations for link 4 is given below. 

 

42 4 4

14 4 4

24 24 14 14 14 4 4

1 0

0 1 ( )
G X

X G Y

X Y Y X Y G Z

c F m A

s F m A g

r s r c r r F I 

     
          
           

 

 

    4 4 4A v b  

 

Solve for three unknowns      1

4 4 4v A b
  and then use F42 in the following 3x3 set of linear equations, 

from the link 2 FBD. 
 

21 2 2 42

21 2 2 42

12 12 2 2 2 42 42 42

1 0 0

0 1 0 ( )

1 ( )

X G X

Y G Y

Y X G Z X Y

F m A cF

F m A g sF

r r I r s r c F 

      
           
           

 

 
We do not need a matrix solution here since the X and Y force equations are decoupled.  The solution is 
identical to that of the four-bar mechanism. 
 

21 2 2 42

21 2 2 42

2 2 2 12 21 12 21 42 42 42

( )

( )

X G X

Y G Y

G Z Y X X Y X Y

F m A cF

F m A g sF

I r F r F r s r c F 

  
   

    
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Matrix inversion requires approximately 
33

log

n

n
 and Gaussian elimination requires approximately 

2
2( 1)

3

n n
n


  multiplications/divisions (Nering, 1974). 

 
Number of Multiplications/Divisions 

Method Inversion Gaussian Reduction 
6x6 833 106 87% 
3x3 plus decoupled link 2   177 24 86% 
Reduction in cost 79% 77%  

 
There is a substantial 77% reduction in computational cost for Gaussian elimination with the 3x3 plus 
decoupled link 2 method.  Also, the numerical accuracy may also improve with this method since we 
needn’t do unnecessary calculations with the three 3x1 columns of zeros. 
 
 
Step 7.  Calculate Shaking Force and Moment  
 
 After the basic inverse dynamics problem is solved, we can calculate the vector shaking force and 
vector shaking moment, which is the force/moment reaction on the ground link due to the motion, inertia, 
weight, and external loads (which we assumed to be zero in this problem).  The shaking force and moment 
for the inverted slider-crank mechanism is identical to the four-bar in notation and terms. 
 
 Ground link force/moment diagram 
 
 
 
 
 
 
 
 Shaking force 

21 14
21 41 21 14

21 14

X X
S

Y Y

F F
F F F F F

F F

 
       

 

 
 
 Shaking moment 

2 21 21 41 14

2 21 21 21 21 41 14 41 14

S

X Y Y X X Y Y X

M r F r F

r F r F r F r F





     

     
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Inverted slider-crank mechanism inverse dynamics example – Term Example 3 continued 
 

Given 

1

2

4

1

0.20

0.10

0.32

0

r

r

L







 

 (m)     

2

4

4

70

150.5

0.19r












  (deg and m)  

 

2

4

4

25

2.47

2.18

r









  (rad/s and m/s)   

2

4

4

0

9.46

267.14

r









  (rad/s2 and m/s2) 

 
 In this problem the external forces and moments are zero for both links 2 and 4.  In inverse 
dynamics we ignore the slider link mass and inertia.  The mechanism links 2 and 4 are uniform, 
homogeneous rectangular solids made of steel ( = 7850 kg/m3) with a constant thickness of 2 cm and link 
widths of 3 cm.  The CGs are in the geometric center of each link.  This yields the following fixed dynamics 
parameters. 

m2 = 0.47 and m4 = 1.51 (kg)  IGZ2 = 0.0004 and IGZ4 = 0.013 (kg-m2) 
 
Snapshot Analysis 
 Given the previous mechanism position, velocity, and acceleration analyses, solve the inverse 
dynamics problem for this snapshot (

2 70   ).  The matrix-vector equation to solve is given below. 

 

21

21

42

14

14

2

1 0 0.49 0 0 0 5.03

0 1 0.87 0 0 0 9.21

0.05 0.02 0.01 0 0 1 0

0 0 0.49 1 0 0 30.77

0 0 0.87 0 1 0 41.82

0 0 0.03 0.08 0.14 0 3.47

X

Y

X

Y

F

F

F

F

F



      
          
                 

     
     

      

 

 
The answer is: 

21

21

42

14

14

2

35.35

62.69

61.47

0.46

11.65

1.10

X

Y

X

Y

F

F

F

F

F



   
   
   
           
   
   
    

 

 

The associated vector shaking force and moment are  
35.81

51.03
SX

S
SY

F
F

F

   
    

  
  (N)   ˆ8 .5 3SM k    (Nm) 
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Full-Range-Of-Motion (F.R.O.M.) Analysis – Term Example 3 continued 
 
 A more meaningful result is to solve and plot the inverse dynamics analysis results for the entire 
range of mechanism motion.  The plots below give the inverse dynamics results for all 

20 3 6 0   , for 

Term Example 3.  Since 2 is constant, we can plot the velocity results vs. 2 (since it is related to time t 

via 2 2t  ). 
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Shaking Force 

 

 
Shaking Moment 
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6.7  Multi-loop Mechanism Inverse Dynamics Analysis 
 
 The Matrix Method can be applied to any planar mechanism inverse dynamics problem.  Here 
are the five two-loop six-bar mechanisms from Dr. Bob’s on-line Atlas of Structures, Mechanisms, and 
Robots (ohio.edu/mechanical-faculty/williams/html/PDF/MechanismAtlas.pdf). 
 

 
Stephenson I 6-Bar Mechanism 

 

    
Stephenson II 6-Bar Mechanism        Stephenson III 6-Bar Mechanism 

 

    
Watt I 6-Bar Mechanism    Watt II 6-Bar Mechanism 

 



 84

 
For example, here are the Watt II six-bar mechanism FBDs, ignoring external forces and moments. 
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The Watt II six-bar mechanism inverse dynamics 15x15 matrix-vector equation is given below. 
 

12 12 32 32

23 23 43 43

34 34 14 14 54 54

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

Y X Y X

Y X Y X

Y X Y X Y X

r r r r

r r r r

r r r r r r



 




 



  



21

21

32

32

43

43

14

14

54

54

45 45 65 65

56 56 16 16

0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0

X

Y

X

Y

X

Y

X

Y

X

Y

Y X Y X

Y X Y X

F

F

F

F

F

F

F

F

F

F

r r r r

r r r r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 

 
 
 

   

2 2

2 2

2 2

3 3

3 3

3 3

4 4

4 4

4 4

5 5

5 565

5 565

6 616

6 616

6 62

( )

( )

( )

( )

( )

G X

G Y

G Z

G X

G Y

G Z

G X

G Y

G Z

G X

G YX

G ZY

G XX

G YY

G Z

m A

m A g

I

m A

m A g

I

m A

m A g

I

m A

m A gF

IF

m AF

m A gF

I











 
   
 
 
 
  
 
 
 
      

  
  
  
     
  
  
 
  
 
   





















 
 
 
   

 

    A v b  
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Step 6.  Solve for the unknowns (continued) 
 Like the four-bar mechanism, it is possible to partially decouple the solution to this problem.  If 
we consider the FBDs of only links 5 and 6 first, this is 6 equations in 6 unknowns – this is verified by 
looking at the original 15x15 matrix and noting nine 6x1 columns of zeros (1, 2, 3, 4, 5, 6, 7, 8, 15) in the 
six rows 10 through 15.  Here is a more efficient solution.  The reduced 6x6 set of equations for links 5 
and 6 is given below. 

54 5 5

54 5 5

45 45 65 65 65 5 5

65 6 6

16 6 6

56 56 16 16 16 6 6

1 0 1 0 0 0

0 1 0 1 0 0 ( )

0 0

0 0 1 0 1 0

0 0 0 1 0 1 ( )

0 0

X G X

Y G Y

Y X Y X X G Z

Y G X

X G Y

Y X Y X Y G Z

F m A

F m A g

r r r r F I

F m A

F m A g

r r r r F I





     
           
                    
      
     

          

 

 

    56 56 56A v b  

 

Solve for the six unknowns      1

56 56 56v A b
 .  Second, consider the FBDs of only links 3 and 4: this is 

6 equations in 6 unknowns – this is verified by looking at the original 15x15 matrix and noting seven 6x1 
columns of zeros (1, 2, 11, 12, 13, 14, 15) in the six rows 4 through 9.  Recognizing that now F54X and 
F54Y are now known from the above 6x6 partial solution, here is a more efficient solution.  The reduced 
6x6 set of equations for links 3 and 4 is given below. 

3 332

3 332

23 23 43 43 3 343

4 4 5443

4 4 5414

34 34 14 14 4 4 54 5414

1 0 1 0 0 0

0 1 0 1 0 0 ( )

0 0

0 0 1 0 1 0

0 0 0 1 0 1 ( )

0 0

G XX

G YY

Y X Y X G ZX

G X XY

G Y YX

Y X Y X G Z Y XY

m AF

m A gF

r r r r IF

m A FF

m A g FF

r r r r I r F rF





   
       
              
     
   

         54 54X YF

 
 
 
  
 
 
 
 
  

 

 

    34 34 34A v b  

 

Solve for six unknowns      1

34 34 34v A b
  and then use F32X and F32Y in the following 3x3 set of linear 

equations, from the link 2 FBD. 

21 2 2 32

21 2 2 32

12 12 2 2 2 32 32 32 32

1 0 0

0 1 0 ( )

1

X G X X

Y G Y Y

Y X G Z Y X X Y

F m A F

F m A g F

r r I r F r F 

      
           
           

 

 
We do not need a matrix solution here since the X and Y force equations are decoupled.  The solution is 
identical to that of the four-bar mechanism. 

21 2 2 32

21 2 2 32

2 2 2 32 32 32 32 12 21 12 21

( )
X G X X

Y G Y Y

G Z Y X X Y Y X X Y

F m A F

F m A g F

I r F r F r F r F 

  
   

    
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Matrix inversion requires approximately 
33

log

n

n
 and Gaussian elimination requires approximately 

2
2( 1)

3

n n
n


  multiplications/divisions (Nering, 1974). 

 
Number of Multiplications/Divisions 

 
Method Inversion Gaussian Reduction 

15x15 8609 1345 84% 
6x6 twice, plus decoupled link 2   1672 183 89% 
Reduction in cost 81% 86%  

 
There is an astonishing 86% reduction in computational cost for Gaussian elimination with the methods 
using 6x6 inversion twice, plus the decoupled link 2 solution.  Also, the numerical accuracy may also 
improve with this method since we needn’t do unnecessary calculations with the sixteen 6x1 columns of 
zeros. 
 
 
 Any mechanism with a dyad of binary links may be decoupled in this manner.  Thus, the method 
is similar and the computational complexity identical for the Stephenson I, Stephenson III, Watt I, and 
Watt II six-bar mechanisms. 
 
 
 The Stephenson II six-bar mechanism does not include a dyad of binary links and so it cannot be 
solved like the other 4 six-bar mechanisms (first links 5 and 6, then links 3 and 4 with one unknown vector 
force from 5 and 6, then link 2 independently).  But links 3, 4, 5, and 6 can be solved first independently 
of link 2: a 12x12 solution followed by the standard link 2 solution.  The computational savings is not as 
impressive as in the former six-bar cases. 
 
 

Number of Multiplications/Divisions, Stephenson II Six-Bar 
 

Method Inversion Gaussian Reduction 
15x15 8609 1345 84% 
12x12 plus decoupled link 2   4811 723 85% 
Reduction in cost 44% 46%  

 
 
There is a 46% reduction in computational cost for Gaussian elimination with the 12x12 plus decoupled 
link 2 method.  Also, the numerical accuracy may also improve with this method since we needn’t do 
unnecessary calculations with the three 12x1 columns of zeros. 
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6.8  Dynamic Balancing of Rotating Shafts 
 
 If high-speed shafts are unbalanced, this can lead to the following problems. 
 

 unwanted vibrations 
 shaking forces 
 wear 
 noise 

 safety concerns 
 comfort of users/riders 
 less efficient 
 shorter service life 

 
 
Let us start with the balancing of a single idealized point mass. 
 
1)  Static Balance  Moments about the rotating shaft must be balanced statically. 
 

 
 
 

0ZM    cos cos 0B Bmgr m gr      B Bmr m r  

 
 
2)  Dynamic Balance  Inertial forces due to motion must also be balanced. 
 
Inertial forces are not actual forces but are effects of acceleration, e.g. centripetal force.  Assuming 
constant input angular velocity , the inertial force is directed outward, opposite to the centripetal 
acceleration directed inward. 
 

( ( ))I CF m A m r        the vector magnitude is 2
IF m r  

 
For dynamic balance, we again add a balance mass.  The dynamic balance condition is: 
 

0I IBF F   
 

The original and balance inertial forces must be equal in magnitude and opposite in direction.  This vector 
balance condition is equivalent to the two scalar equations below. 
 

0

0

X

Y

F

F







  
2 2

2 2

cos cos 0

sin sin 0

B B

B B

mr m r

mr m r

   

   

 

 
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Both equations yield the same condition as the static balance case, namely: 

B Bmr m r  

 
So, if a single mass is balanced statically, it is also balanced dynamically. 
 
 
 
Now let us include a system of idealized point masses attached to the same rotating shaft. 
 

 
 
 
1)  Static Balance 
 The rotating shaft will be balanced statically if the system CG lies on the axis of rotation. 
 

0

0CG

X
P

Y

   
    

  
 

 
Recall the scalar CG equations for a system of point masses: 
 

i i
CG

i

m x
X X

m
  


  i i

CG
i

m y
Y Y

m
  


 

 
 

Let us consider a system of four point masses.  There are two equations to satisfy: 
 

4

1

cos 0i i i
i

m r 


    
4

1

sin 0i i i
i

m r 


  

 

where cosi i ix r  ,  sini i iy r  ,  and the 
4

1
i

i

m

  term in the denominator cancels out. 

 If we fix each miri, these are 2 equations in the four unknowns i.  Therefore, arbitrarily fix 1,2 
and solve for 3,4.  This is equivalent to solving the four-bar linkage position problem. 

 

1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 2 2 2 3 3 3 4 4 4

0

0

m r c m r c m r c m r c

m r s m r s m r s m r s

   
   

  2 2 3 3 1 1 4 4

2 2 3 3 1 1 4 4

r c r c rc r c

r s r s r s r s

  
  
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Let Ri = miri; the vectors 1 and 4 are reversed compared to the four-bar mechanism.  So we know how to 
solve these equations.  The shaft will be statically balanced for any shaft angle .  Here is the associated 
figure. 

 
 
2)  Dynamic Balance 
 For dynamic balance, we must consider the front view in addition to the previously-shown side 
view. 

 
 
If the following conditions are satisfied assuming constant , we will have dynamic balance. 

0

0

0

X

Y

Z

F

F

F











   

0

0

0

X

Y

Z

M

M

M











 

 
Let us consider each in turn. 
 

4 4
2

1 1

4 4
2

1 1

cos cos 0

sin sin 0

0 0

X i i i i i i
i i

Y i i i i i i
i i

Z

F m r m r

F m r m r

F

  

  

 

 

  

  

 

  

  



 

 

The XF  and YF  equations are already satisfied by the static balancing, because 2 divides out.  

The ZF  equation yields nothing because all inertial forces are in the XY plane. 
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4
2

1

4
2

1

sin 0

cos 0

0 0

X i i i i
i

Y i i i i
i

Z

M m r L

M m r L

M

 

 





 

  

 

 

 



 

 
 

The XM  and YM  equations must be solved to satisfy dynamic balancing.  The ZM  equation 

yields nothing because all inertial forces pass through the axis of rotation. 
 
 We fixed each miri, we previously determined i, and the 2 term divides out.  Therefore, we have 
two equations in the four unknowns Li; arbitrarily fix L1, L2 and solve for L3, L4.  The result is two linear 
equations in the two unknowns. 
 

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

sin sin sin sin 0

cos cos cos cos 0

m r L m r L m r L m r L

m r L m r L m r L m r L

   
   

   
   

 

 
 

3 3 3 4 4 4 3 1 1 1 1 2 2 2 2

3 3 3 4 4 4 4 1 1 1 1 2 2 2 2

sin sin sin sin

cos cos cos cos

m r m r L m r L m r L

m r m r L m r L m r L

   
   

      
          

 

 
Solve for L3, L4 and the system will be balanced statically and dynamically. 
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7.  Gears and Cams 
 
7.1  Gears 
 
7.1.3  Gear Trains 
 To obtain a higher gear ratio than practical with a single pair of standard involute spur gears, one 
can mate any number of spur gears in a gearbox, or gear train.  The leftmost gear is the driving gear and 
the rightmost is the output gear.  All intermediate gears are first the driven gear and then the driving gear 
as we proceed from left to right.  Let us calculate the overall gear ratio nGT. 

IN
GT

OUT

n



  

Example 
 
 
 
 
 
 
We can find the overall gear ratio by canceling neighboring intermediate angular velocities. 
 
 
 
 
 
Each term in the above product may be replaced by its known number of teeth ratio. 
 
 
 
 
 
All intermediate ratios cancel, so 
 
 
 
 
 
We could have done the same with pitch radii instead of number of teeth because they are in direct 
proportion. 
 
 
 
 
So, the intermediate gears are idlers.  Their number of teeth effect cancels out, but they do change 
direction.  We should have included the +/– signs, by inspection.  For gear trains composed of externally-
meshing spur gear pairs: 

odd number of gears  the output is in the same direction as the input 
 even number of gears  the output is in the opposite direction as the input 
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Improved gear train 
 That gear train concept did not work.  Now let us mate any number of spur gears, where the driving 
and driven gears are distinct, because each pair is rigidly attached to the same shaft.  Again, let us calculate 
the overall gear ratio. 

IN
GT

OUT

n



  

Example 
 
 
 
 
 
 
 
 
 
Again, we use the equation 
 
 
 
 
 
 
But now the gears rigidly attached to the same shaft have the same angular velocity ratio, so 
 
 
 
 
 
 
The general formula for this case is 
 
 
 
 
 
 
Again, we must consider direction 
 
 
 
 
 
For gear trains composed of externally-meshing spur gear pairs: 

odd number of pairs  the output is in the opposite direction as the input 
 even number of pairs  the output is in the same direction as the input 
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7.1.4  Involute Spur Gear Standardization 
 
Rolling Cylinders 
 
 Mating spur gears are based on two pitch circles rolling without slip.  These are fictitious circles, 
i.e. you cannot look on a gear to see them.  The actual gear teeth both roll and slide with respect to each 
other (via the two-dof gear joint). 
 
 
Fundamental Law of Gearing 
 
 The angular velocity between the gears of a gearset must remain constant throughout the mesh. 
 
 From our study of linkage velocity, we know this is no easy feat.  Velocity ratios in a linkage vary 
wildly over the range of motion. 
 

 Velocity Ratio  
1

VR OUT IN

IN OUT

r

r n




    

 

 Torque Ratio   TR IN OUT

OUT IN

r
n

r




     

 
 The velocity ratio is the inverse of the gear ratio n and the torque ratio is the same as the gear ratio 
n defined previously.  The torque ratio is also called Mechanical Advantage (MA). 
 
 
Involute Function 
 
 Standard spur gears have an involute tooth shape.  If the gears’ center distance is not perfect 
(tolerances, thermal expansion, wear – in design the center distance is increased slightly by the engineer 
to allow for these effects; this is called clearance), the angular velocity ratio will still be constant to satisfy 
the Fundamental Law of Gearing. 
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The involute of a circle is a curve generated by unwrapping a taut sting from the circumference of a so-
called base circle, always keeping it tangent to the circle.  The figure below has th = [0:5:60]*DR 
and rb = 1 m.  The red circle is the gear base circle, the blue lines are the taut tangent construction lines, 
and the green curve is the involute function. 
 

 
Involute Function Construction 

 
In polar coordinates (,  r), the parametric equations for the involute of a circle are given below. 

tan

secb

t t

r r t

  


 

 
where t is the independent parameter and rb is the base circle radius.  In Cartesian coordinates (xI, yI): 

cos sec cos(tan )

sin sec sin(tan )
I b

I b

x r r t t t

y r r t t t




  
  

 

-1 -0.5 0 0.5 1 1.5
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-0.5
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1

X (m)

Y
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m
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Involute Function Example 
 
 The plot below shows the involute function for a circle of rb = 1 m.  The parameter range is t = 
[0:1:80]*DR; near the circle the involute points are very close to each other and farther away the step 
size increases dramatically. 
 The involute function is symmetric (try t = [0:5:360]*DR) but watch out for those 
intermediate steps).  Gear teeth only require the involute near the base circle, with two symmetric sides. 
 

 
 

Involute Function of a Circle 
  

-6 -5 -4 -3 -2 -1 0 1 2
-4

-3

-2

-1

0

1

2

3

4

X (m)

Y
 (

m
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The next three figures from Norton (2008)3 show important gear geometry for planar spur gear 
design and standardization.  In these figures, the pink pinion is the driving or input gear, and the gray gear 
is the driven or output gear. 
 
 

 
Norton (2008) 

 
 Base Circle  The involute function starts from this circle. 
 

Pitch Circle A fictitious circle (you cannot see it on a spur gear) with theoretical pure 
rolling in contact between two cylinders of the pinion and gear. 

 
 Pitch Point  The contact point between the two pitch circles. 
 

Pressure Angle The angle between the common normal (also called axis of transmission) of 
the two meshing teeth and the velocity of the pitch point (the tangent to both 
pitch circles).  The point of contact slides along this line.  A similar angle is 
defined for cams and followers. 

 
 
 The relationship among the base circle radius rb, pitch circle radius rp, pressure angle  is 
 

co sb pr r   

 

 
3 R. Norton, 2008, Design of Machinery:  An Introduction to the Synthesis and Analysis of Mechanisms and Machines, McGraw-Hill. 
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Norton (2008) 

 
 The length of contact is measured along the axis of transmission.  The beginning of contact is 
when the tip of the driven gear tooth intersects the axis of transmission. The end of contact is when the tip 
of driving gear tooth intersects the axis of transmission, as shown in the figure above.  Only one or two 
teeth are in contact at any one time for standard spur gears. 
 

For harmonic gearing, many teeth are in contact at any one time, which provides a higher gear 
ratio in a smaller package. 
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Norton (2008) 

 
 Increasing the center distance increases the pressure angle and increases the pitch circle radii, 
but doesn’t change the base circles (obviously – the gears are made based on their own constant  rb).  
Thanks to the involute tooth shape, increasing the center distance does not affect the angular velocity 
ratio.  This is why the involute function is so widely used in spur gears. 
 
 The relationship from before still applies with an increase in center distance. 
 

co sb pr r   

 
Again, rb is fixed, and rp and  both increase – the cosine function maintains the constant rb. 
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Spur Gear Standardization 
 
 Gear standardization is used to allow interchangeability in manufacturing and to allow meshing of 
different size gears (different pitch radii and number of teeth) to achieve desired gear ratios.  For two spur 
gears to mesh, they must have 
 

1)  the same pressure angle (see previous figures and definition) 
 
2)  the same diametral pitch (see the equation below) 
 
3) standard tooth proportions (see the figure below) 

 
  

 diametral pitch  d

N
p

d
  

 
 Where N is the number of teeth and d is the pitch diameter, both for each gear. 

 
 

 module   
1

d

d
m

N p
   

 
Module is the SI version of diametral pitch (it is the inverse).  SI gears are not 
interchangeable with English system gears because of different tooth proportion standards. 

 
 

 circular pitch   c

d
p

N


  

 
Circular pitch is the circumferential distance (arc length) between teeth along the pitch 
circle of a spur gear. 
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from Norton (2008) 

 
 
Standard involute tooth proportions 
 

 Addendum is radial distance from pitch circle to top land of tooth. 

 Dedendum is radial distance from pitch circle to bottom land of tooth (not to the base circle). 

 Clearance is radial distance from bottom land to mating gear top land (radial backlash). 

 Face width is thickness of tooth and gear (mating widths needn’t be the same). 

 Tooth thickness t is the circumferential arc length of each tooth.  It is related to the circular pitch 

pc and backlash (next page) b by 

 

2cp t b 
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Backlash 
 

Backlash B is the distance between mating teeth measured along the pitch circle circumference.  
Backlash can be thought of as circumferential clearance.  All real-world gears must have some backlash 
in order to still function despite real-world problems of manufacturing tolerances, thermal expansion, 
wear, etc.  However, one must minimize backlash for smooth operation.  For example, robot joints must 
be driven both directions.  Upon changing direction, nothing happens until the backlash is passed, and 
then an impact occurs, which is bad for gear dynamics.  This is a non-linear effect in robotics.  On earth 
gravity tends to load the backlash for predictable effects.  In space however, the backlash is less 
predictable. 
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7.1.5  Planetary Gear Trains 
 
 Planetary gear trains are also called epicyclic gear trains.  The sun gear rotates about a fixed axis.  
Each planet gear rotates about its own axis and also orbits the sun gear.  This happens with direct meshing 
of teeth, unlike celestial planetary motion.  The arm link (which is a rigid body with no teeth) carries the 
planet(s) around the sun.  The arm has a revolute joint to the sun gear on one side and another revolute 
joint to the planet gear(s) on the other side.  Planetary gear trains have two-dof, so two inputs must be 
given to control the mechanism.  For instance, one can drive the sun gear and the arm link with independent 
external motors.  Alternatively, the sun gear may be fixed and the arm link driven.  Using planetary gear 
trains, one can obtain a higher gear ratio in a smaller package, compared to non-planetary gear trains. 
 

    
 
 Conventional Gear Pair    Planetary Gear Train 
 
 3(3 1) 2(2) 1(1) 1M          3(4 1) 2(3) 1(1) 2M       

 

 IN OUT OUT

OUT IN IN

r N
n

r N




       ?IN

OUT

n



    

 
We present the tabular method below to determine the gear ratio for various planetary gear trains. 
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Planetary Gear Train Mobility 
 

 
 

Planetary Gear Train with Three Planets and Internally-Meshing Ring Gear 
(note – figure does not show the necessary ground link) 

 
As stated and derived above, planetary gear trains have M = 2 dof, so they are technically classified 

as a robot.  However, they are almost always used as mechanisms with M = 1 dof, by fixing to ground 
either the sun gear or the internally-meshing ring gear.  (One cannot fix the arm, or it would no longer be 
a planetary gear arrangement!) 

 
The mobility calculation using the planar Kutzbach equation is more complicated for the case 

shown on this page, so we will now present that. For the planetary gear train above with three planet gears 
and an internally-meshing ring gear, there are 7 rigid links (ground link, sun gear, three planet gears, ring 
gear, and non-toothed arm link).  There are 6 R joints (3 between the arm and planet gears, and then a 
triple R-joint in the middle, connecting, the sun gear, the ring gear, and the arm to ground independently).  
There are 6 gear joints, between the sun and planet, and the planet and ring gears, 3 times).  So we calculate 
the following mobility for the overall device: 
 

3(7 1) 2(6) 1(6) 18 12 6 0M          dof 
 
Clearly this is incorrect since we know this device has freedom to move and is not a statically-determinate 
structure.  Thus, we see another example where the Kutzbach equation fails due to lack of knowledge of 
special geometry. 
 This device would function identically kinematically if there were a single-lobed arm and a single 
planet gear.  Therefore, let us calculate the mobility with this in mind.  This simplified case has 5 rigid 
links, 4 R joints, and 2 gear joints, yielding: 
 

3(5 1) 2(4) 1(2) 12 8 2 2M          dof 
 
as expected.  As mentioned above, a practical planetary gear mechanism requires 1 dof, so we must lock 
either the sun gear or the ring gear to the ground link, yielding: 
 

3(4 1) 2(3) 1(2) 9 6 2 1M          dof 
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Planetary Gear Train Applications 
 

 
 

Airplane Propeller Transmission 
 
The M = 2 dof from the previous page is constrained to M = 1 dof by fixing the sun gear to ground in the 
airplane propeller example above. 
 
 Planetary gear train applications include airplane propellers, some automotive transmissions and 
differentials, machine tools, hoists, and a hub-enclosed multi-speed bicycle transmission. 
 
 

 
 

Old-Fashioned Pencil Sharpener 
 

appauto.files.wordpress.com 
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Planetary Gear Box in Stages 
 

This is a commercial planetary gear set with 8 possible ratios (4:1, 5:1, 16:1, 20:1, 25:1, 80:1, 
100:1, 400:1). 
 

servocity.com 
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Table Method Analysis 
 

 First, consider a simplified planetary gear system with 0S  .  With the sun gear as the fixed 

link, we have a 1-dof system.  Given the input A, calculate the absolute value of P.  The Table Method 
is based on the following relative velocity equation. 
 

/G A G A     

 
This is a vector equation, but since all rotations are about the Z axis, we just use the magnitudes and + for 
CCW and – for CW, according to the right-hand-rule.  This equation is written for each gear in the system 

(replace G with the appropriate index).  A stands for arm. ,G A   are the absolute angular velocities of a 

gear and the arm link. /G A  is the relative velocity of a gear with respect to the moving arm link.  

Construct a table as below; each row is the relative equation written for a different gear. 
 

G G = A + G/A 
S  
P  

 
 
First, fill in the given information. 
 

G G = A + G/A 
S 0  A   
P   A   

 
 
Each row must add up according to the relative velocity equation 
 

G G = A + G/A 
S 0  A  –A 
P   A   

 
 
Now we can fill in down the relative column, using a simple gear ratio (relative to the arm). 

/

/

P A S

S A P

N

N




    / /
S S

P A S A A
P P

N N

N N
     

 
G G = A + G/A 
S 0  A  –A 
P   A  S

A
P

N

N
  
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The last row must add up according to the relative equation, to finish the table. 
 

G G = A + G/A 
S 0  A  –A 
P 

1 S
A

P

N

N


 
 

 
 

 A  
S

A
P

N

N
  

 

Therefore, the absolute angular velocity of the planetary gear is 1 S
P A

P

N

N
 

 
  
 

.  Since the sign is 

positive, it has the same direction as A (CCW). 
 
 
Calculate Effective Gear Ratio 
 

1

1

IN A P

SOUT P P S

P

N
n

N N N
N

 
 

   


 

 
 
Example 
 

10SN  40PN   0S    100A   rpm, CCW 

 
10

1 100 125
40P

    
 

 rpm, CCW 

 
40

0.8
40 10

P

P S

N
n

N N
  

 
 

 

Check  A

P

n



   
100

125
0.8

A
P n

     

 
 

So we see that with 0S  , the gear ratio is not higher than the conventional gear train. 

 
40

10
P

S

N
n

N
  . 

 

Let us include 0S   next. 
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Table Method Analysis  Now we present a more general system with 0S  . 

 
1)  The given information is starred (*). 
 

2)  The S equation must add up; therefore /S A S A    . 

 
3)  Fill down the right column using a simple gear train, relative to arm A. 

/

/

P A S

S A P

N

N




    / / ( ) ( )S S S
P A S A S A A S

P P P

N N N

N N N
             

 
4)  The P equation must add up; therefore: 

( ) 1S S S
P A A S A S

P P P

N N N

N N N
     

 
      

 
. 

 
G G = A + G/A 
S * S  * A  

S A   

 
P 

1 S S
A S

P P

N N

N N
 

 
  

 
 

 * A  
( )S

A S
P

N

N
   

 
 

Examples  0S   

 

1) 10SN  40PN   100S   rpm, CW  100A   rpm, CCW 

 10 10
1 100 100 125 25 150

40 40P
         
 

 rpm, CCW Still not a big ratio. 

 
 

2) 40SN  10PN  100S   rpm, CW  100A   rpm, CCW 

40 40
1 100 ( 100) 500 400 900

10 10P
         
 

 rpm, CCW That’s a big ratio. 

 
 

3) 40SN  10PN  125S   rpm, CCW  100A   rpm, CCW 

40 40
1 100 (125) 500 500 0

10 10P
       
 

 

In Example 3, the Sun and Arm rotational velocities cancel so the absolute angular velocity of the Planet 
is zero. 
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Table Method Analysis 
 

 Now let us consider an even more general system with 0S  , also adding an internal-teeth ring 

gear. 

 
 
1)  The given information is starred (*). 
 
2)  The first two rows are identical to the case above. 
 
3)  Fill down the right column using a simple gear train, relative to arm A. 

/

/

R A P

P A R

N

N




    / / ( ) ( )S SP P
R A P A A S A S

R R P R

N NN N

N N N N
             

 
4)  The R equation must add up; therefore: 

( ) 1S S S
R A A S A S

R R R

N N N

N N N
     

 
      

 
. 

 
 

G G = A + G/A 
S * S  * A  

S A   

 
P 

1 S S
A S

P P

N N

N N
 

 
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 
 

 * A  
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A S
P

N

N
   
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1 S S

A S
R R
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 

 
  

 
 

 * A  
( )S

A S
R

N

N
   
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Examples  0S   plus ring gear 

 

1)  10SN   40PN   100RN   100S   rpm, CW 100A  rpm, CCW 

 
10 10

1 100 ( 100) 110 10 120
100 100R

         
 

 rpm, CCW 

 

 

2)  40SN   20PN   80RN  100S   rpm, CW 200A  rpm, CW 

 

1 S S
P A S

P P

N N

N N
  

 
   
 

 

 
40 40

1 ( 200) ( 100) 600 200 400
20 20P

           
 

 rpm, CW 

 
 

1 S S
R A S

R R

N N

N N
  

 
   
 

 

 
40 40

1 ( 200) ( 100) 300 50 250
80 80R

           
 
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7.2  Cams 
 
7.2.3  Analytical Cam Synthesis 
 
Disk Cam with Radial Flat-Faced Follower 
 Assume a valid cam motion profile has been designed according to the Fundamental Law of Cam 
Design; i.e. we now have continuous S, V, A curves.  Given the motion profile found by the engineer, 
now we must determine the cam contour. 
 

Is it as simple as polar-plotting S = f() vs. cam angle  ?  No – that approach would not account 
for the face width of the cam follower, i.e. the contact points are not along radial lines in general.  We will 
use kinematic inversion to simplify the synthesis process. 
 
DCRFFF Figure 

 
 

As seen in the figure, the radius R out to the flat-faced follower (not to the point of contact x, y) is: 
 

( )R C f    
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where C is the minimum cam radius, a design variable, and S = f() is the given cam motion profile.  The 
radius R and the flat-faced follower length L can be related to the contact point x, y and the cam angle 
through geometry. 

 
cos sin

sin cos

R x y

L x y

 
 

 
  

 

 
Notice that 

sin cos
dR

x y L
d

 

    

 

( ( ))
d df

L C f
d d


 

     

 
 

To calculate the follower flat-face length, double the maximum of L from above.  It is doubled because 
by symmetry the contact point will change to the other side at 180   . 
 
 To summarize thus far: 

( )R C f     
df

L
d

  

 
 

This is sufficient to manufacture the cam since it is machined with , R, L coordinates.  If we want to 
know the cam contour in Cartesian coordinates, we must solve the relationships for x, y.  In matrix form: 

 
cos sin

sin cos

x R

y L

 
 

     
         

 

 
 

This special coefficient matrix [A] is orthonormal, which means both columns and rows are perpendicular 
to each other and both columns and rows are unit vectors.  One unique property of orthonormal matrices 

is    1 T
A A

  .  The Cartesian cam contour solution is thus: 

 
cos sin cos sin

sin cos sin cos

x R R L

y L R L

   
   

        
               

 

 
 

 

 

( )cos sin

( )sin cos

df
x C f

d

df
y C f

d

  


  


  

  
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Minimum Cam radius to Avoid Cusps 
 
 A cusp is when the cam becomes pointed or undercut.  Clearly, this must be avoided for good cam 
motion.  The cusp condition is that for a finite  , there is no change in x, y. 
 

0
dx dy

d d 
        will cause a cusp. 

 
 

 

 

2

2

2

2

( )sin cos cos sin

( )cos sin sin cos

dx df df d f
C f

d d d d

dy df df d f
C f

d d d d

    
   

    
   

     

    

 

 
 

 

 

2

2

2

2

sin

cos

dx d f
C f

d d

dy d f
C f

d d

 
 

 
 

 
    

 

 
   

 

 

 
 

0
dx dy

d d 
   occurs simultaneously only when 

2

2
( ) 0

d f
C f

d



    

 
Therefore, to avoid cusps on the entire cam contour, we must ensure that  

2

2
( ) 0

d f
C f

d



    

 
Note that C is always positive and f() starts and ends at zero and never goes negative.  So the sum of 
these positive terms and the sometimes-negative second derivative of the cam motion profile must always 
be greater than zero to avoid cusps or undercutting in the practical cam you are designing. 
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Disk Cam with Radial Flat-Faced Follower Design Example 
 
 Specify a full-cycloidal rise with a total lift of 50 mm, followed by a high dwell, a symmetric full-
cycloidal return with a total fall of 50 mm, and then a low dwell.  Each of these four motion steps occurs 
for 9 0   of cam shaft rotation. 
 
 The full-cycloidal rise and fall cam motion profile associated with this specification is shown 
below.  Clearly, this satisfies the Fundamental Law of Cam Design because the position, velocity, and 
acceleration curves are continuous.  The jerk is not continuous, but it remains finite over all cam angles. 
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 Choosing a minimum cam radius of C = 100 mm, the resulting cam contour is shown below. 
 

 
 

Cam Cartesian Contour 
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Let us check the cusp avoidance plot.  To avoid cusps in this cam, we require that 
 

2

2
( ) ( ) ( ) 0

d f
C S A C f

d
  


       

 
As seen in the plot below, this inequality is satisfied for the entire range of motion, so this cam design is 
acceptable with respect to avoiding cusps and undercutting. 
 

 
 

Cam Cusp Avoidance Plot 
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Cam/Follower Animation Snapshot for 
2 6 0    (CW) 
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