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4. Forward Pose Kinematics (FPK)

4.3 FPK Examples
4.3.4 Spatial PRP Cylindrical Serial Robot FPK Solution

Forward Pose Kinematics Symbolic Derivations
Given the cylindrical robot (the 9 constant DH Parameters) and L,,8,,L,, Calculate [gT } .

Note [gT} is represented by {0X3} ={X Yy z ¢}T :

Z;
X 3
Top
e

Front
I G &, d, 6
1 0 0 L1 0 — [OT]
2 0 0 0 ) = I:ZT:I
3 -90 0 L3 0 — iT]




Substitute each row of the DH parameters table into the equation for [HiT] .

co, —s0, 0 a,
[H_ }: sbca,, cOca;, -so;, -dsa,
' sfsa,, cOsa, , cCo, dca,
0 0 0 1
1000 ct, —s6, 0 0 1 0 0 O
01 0 O s¢, cd, 0 O 0 0 1 L
(L) = T@) =" (L) |=
[1]001L1 [T@)] 1 0 [3]0_100
0 0 0 1 0 1 0 0 0 1
cd, 0 -sO, -L;s6,
6, 0 cb, Lcé "Xi)={% v, z, ¢}
rl=lrwlre Tl L ()=t % T
o 0 o 1 =i-kst Let, L 0

(interpret geometrically)

In this robot the point of interest is the origin of {3} so no hand frame {H} is required. Also, the kinematic
base frame {0} is already on the floor, so there is no need for another base frame {B}.

Spatial Cylindrical Robot FPK Examples
1) Given L, =3,6,=30",L, =2, calculate [(;T]

0866 0 —05 -1
05 0 0866 1.732 ’X
7] .

{X3 Y; 4 ¢}T
;
={—1 1.732 3 30°}

= or
0 -1 0 3

0 0 0 1

2) Given L, =2,6,=-90", L, =1, calculate | T |.
0 0 1 1]
1 0 0 0 x)={x v, z 4
] . T
0 -1 0 2 ={1 0 2 —90°}
(0 0 0 1]

Check both results with sketches (top and front views). Be sure to include the {3} and {0} XYZ axes to
check the orientation [2 R] in addition to the position vector {OP3} .



4.3.5 Spatial 6R PUMA Serial Robot FPK Solution

Spatial 6R PUMA Robot Forward Pose Kinematics Symbolic Derivations

Given the robot (the 18 constant DH Parameters) and (8,,6,,6,,6,,6;,6,), Calculate [(;T] and [,_B|T} :

Zst Z,
»Zs5 Xs

X, L,

..-"ZS

- Z,

Waist

ZE Ls




Step 1. Derive all n neighboring [

i—1

iT] matrices by substituting each row of the DH parameters table

into the formula we derived for [HiT} on the previous page. Row i yields the homogeneous

transformation matrix [HiTJ . Do this for all n active dof, i.e. all n rows of the DH parameters table.

Example: Spatial 6-dof 6R PUMA Robot DH Parameters Table (figure given earlier)

i 25 4, d 0

1 0 0 0 o = [T]
2 -90° 0 Lo 6, —90 = [T]
3 0 Li 0 6, +90° = [T ]
4 90° 0 L o = [T ]
5 —90° 0 0 & = L7
6 90° 0 0 6, +90° = [T ]

Substitute each row of the DH parameters table into the equation below for [HiT]. Evaluate the angle

offsets also, i.e. use the trigonometric sum-of-angle formulas (given on the next page).

co, —s0, 0 a;_,
[ ”T] _|sbca, cOce, —sa, —disa cos(a+b)=cacbxsash
"1 sOsa, cOsa., ca_, dca, sin(a+b) = sach + casb
0 0 0 1
¢, —=s, 0 0 s, ¢, 0 0 [-s, —¢, 0 L
s, ¢ 00 0 0 1 c, -s;, 0 0
(715 (7] ) EAC
0 0 10 c, -s, 0 0 0 0 1 0
0 0 01 0O 0 0 1 | 0 0 1
¢, -s, 0 0 ¢, -Ss; 00 -s, —C, 0 0
0 0 -1 -L 0 0O 1 O 0 0 -1 0
[7]- : [7]= [T]
s, ¢ 0 0 -s, —¢, 0 0 cc, -S¢ 0 O
0 0 0 1 0 0 0 1 0 0 1

Step 2. Use matrix multiplication with consecutive homogeneous transformation matrices in the correct
order to yield the forward pose kinematics solution.

[(6)1'] gives the pose (position and orientation) of the last active joint/link Cartesian coordinate

frame {6} with respect to the kinematic base Cartesian coordinate frame {0}. It is a function of alln =6
joint variables.



PUMA FPK Solution
[T ]=[T@ @[ To)][Ten] Te)][T®)]

There are 2 different representations for the FPK solution: [2T]<—>{OX6}, where

{°X6} = {X y z y f a}T , and we use Z-Y-X (a—f—y) Euler angles convention.

This FPK solution for the spatial 6-dof 6R PUMA robot can be simplified by deriving the analytical
results separately for the arm joints (8,,6,,6,), primarily responsible for positioning in 3D, and the wrist

joints (6,,6,,6,), primarily responsible for orienting in 3D.

I:gTiI:I:gT(el’92’93)}[21-(94’€5’€6)}

PUMA Arm Angles FPK Solution

Take advantage of parallel Z axes in the consecutive arm frames {2} and {3} — use trigonometric
sum-of-angles formulas (given above).

[57(6.6,,6)]=[T(@)][T(6,.6)]

c, =S, 0 0f cy -s;, 0 Ls,
s, ¢ 000 0 1 L
°T,.6,.6,) =" ’
[57.0.0)] 0 0 1 0f-s, —¢, 0 Lg,
0 0 01/, 0 0 0 1

CCy —CiSy —5 _LOSI + L1C1sz
SCs 7SS G LOCI + L13132
—Sy —Cy 0 L1C2

0 0 0 1

[?(91,92,93)} =

C,; =cos(6, +6;)

where the following abbreviations were used: i
S,;, =sin(d, +6,)

PUMA Wrist Angles FPK Solution

There are no consecutive parallel Z axes in the consecutive wrist frames {4}, {5}, and {6}.
Therefore, no sum-of-angles formula simplification is possible.



[2T0,.6.,0) |=[T @) [T @) ][iT@,)]

-s,C,—C,CS,  S,S,—C,.CCc, CS, O
3 —S5S6 —S5Cs -G - Lz
|:6T(94,(95,(96)] =
c,C, —S,CS¢ —C,S,—S,6¢, S, O

0 0 0 1

It is left to the reader to perform the symbolic multiplication [?]ZBT}[ET], the result is very

complicated and can be found by using symbolic math on the computer (e.g. the MATLAB Symbolic
Toolbox). Alternatively, these two matrices can be evaluated and multiplied numerically, using

LT =l i)

Here we will present one aspect of this multiplication. Due to the spherical wrist (wrist frames
{4}, {5}, and {6} share a common origin), the position vector {OF’6} is a function only of the first three

joint angles.
_Los1 + L1C132 + L2C1323

{0P6(91392’H3)} :{0P4} = BT]{}E} =1 L& +Lss, +L,s;s,,
Lc, +L,C,3

Where constant vector {3P4} :{0 -1, O}T. In this way the PUMA FPK symbolic expressions are
partially decoupled. The position vector {OP(,} is only a function of (&,6,,6,), but the rotation matrix

[2 R} i1s a complicated function of all six joint angles. This fact is used to simplify the Inverse Pose

Kinematics solution.

Additional, fixed transforms
The above [ T } result is for the active joints only — often we need to expand this result to include

additional transformations that are constant. For example, the kinematic base frame {0} may be located
at the shoulder of the robot, while another base frame {B} may be mounted on the floor. Also, the
Forward Pose Kinematics expressions will be simplest if {6} is located at the last active wrist joint; if a
tool, gripper, or other end-effector is attached we need another frame of interest (say {H} for hand)
attached; {H} is rigidly connected to {6} (i.e. no more joints in between) but offset by some distance.
The overall Forward Pose Kinematics Homogeneous Transformation Matrix is given in generic

form below. Note that the fixed matrices [ °T ] and [,_?T] are not determined by DH parameters since

there is no active joint involved in those two transformations. Instead, we simply determine these matrices
by inspection. Make the orientation identical if possible.

[T ]=[T(W)][7@.6.6.6,.6.6) | T(L,)]
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1 0 0 O 1 0 0 O

01 0 O 01 0 O
T(Ly)|= T(Ly) |=

[5T(Ly) ] 001 L [aT(L)] 001 L

0 0 0 1 0 0 0 1

Sum of Angles Simplification

The first use of the sum-of-angles formulas below is in simplification of [HiT} when there are

angle offsets for one or more of the & (i = 2,3,6 in the PUMA robot).

If any two (or more) consecutive Z axes are parallel (i.e. consecutive & rotate about parallel Z
axes), we can simplify the resulting symbolic Forward Pose Kinematics expressions by using sum of angle
formulas.

cos(axh)=cacbxsash

sin(a+b) =sacb+casb

Many common industrial robots have this parallel axes characteristic for at least one pair. First multiply
together any two individual Homogeneous Transformation Matrices that represent consecutive parallel
axes (shown for joints 2 and 3 of the PUMA above). Take care to keep the proper matrix multiplication
order; i.e. use the associative property of matrix multiplication, DO NOT commute the order of matrices.
Then use the above trigonometric formulas to simplify all possible terms to sums of angles before
completing the other matrix multiplications.

PUMA Robot FPK Examples

Given fixed robot lengths L; =1.0,L,=0.3,L, =1.5,L, =1.2,L,, =0.5 (m).

1) Given {©} =(10",20°,30",40°,50",60°), calculate [ ;T | and [ 7T ].

0.023 0.637 0.771 1.358 0.023 0.637 0.771 1.744
[ ]_ 0.030 -0.771 0.636 0.544 [B ]_ 0.030 -0.771 0.636 0.862
1710999 0.008 -0.036 2.181 1710999 0.008 —0.036 3.163

0 0 0 1 0 0 0 1

2) Given {@} = (=60",-50°,~40°,~30°,-20",~10"), calculate | ¢T | and [ 3T |.

0.638 0.699 -0.322 -0.915 0.638 0.699 -0.322 -1.076
[OT]— 0.437 0.015 0.899 2.184 [BT]— 0.437 0.015 0.899 2.634
©J710.634 -0.715 -0.296 0.964 110634 —0.715 -0296 1.816

0 0 0 1 0 0 0 1
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5. Inverse Pose Kinematics (IPK)

5.2 Planar 3R Robot IPK Solution

Tangent half-angle substitution derivation

In this subsection we first derive the tangent half-angle substitution using an
analytical/trigonometric method. Defining parameter t to be:

o

1.e. the tangent of half of the unknown angle ¢, we need to derive cos¢ and sing as functions of parameter
t. This derivation requires the trigonometric sum of angles formulae.

cos(atb)=cosacosbF¥sinasinb
sin(a+b)=sinacosb*cosasinb

To derive the cos¢ term as a function of t, we start with:

—cos| 242
cos¢—cos[2+2]

The cosine sum of angles formula yields:

cos ¢ = cos’ (%) —sin® (%)

Multiplying by a ‘1°, i.e. cos’ (—j over itself yields:

The cosine squared term can be divided by another ‘1°, i.e. cos’ (—j +sin’ (%J =1.




Dividing top and bottom by cos® (gj yields:

2 & 1
cos¢ = {1 —tan [—ﬂ _—
2 1+ tan’ (ﬁ)

Remembering the earlier definition for t, this result is the first derivation we need, i.e.:

1-t*
141>

cos¢p =

To derive the sing term as a function of t, we start with:
sin @ =sin ¢ +zj
2 2

The sine sum of angles formula yields:

sin ¢ = sin (é] cos (ﬂj + cos (ﬂj sin (éj = 2sin [QJ cos (ﬁ)
2 2 2 2 2 2

Multiplying top and bottom by cosine yields:

sing =2

ﬂcosz 2= 2tan[ 2 |cos?[ £
COS@ (2] (2] @

From the first derivation we learned:

12
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Substituting this term yields:

. ¢ 1
sing =2tan (—j —_—
2 1+ tan’ [?j

Remembering the earlier definition for t, this result is the second derivation we need, i.e.:

2t
1+t

sing=

The tangent half-angle substitution can also be derived using a graphical method as in the figure

below.

2/

sin ¢

¢ cosy [
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Alternate Planar 3R IPK solution method

The equation form
Ecos+Fsind+G=0

arises often in the position solutions for mechanisms and robots. It appeared in the & solution of the
Inverse Pose Kinematics solution for the planar 3R robot in the EE/ME 4290/5290 NotesBook and was
solved using the tangent half-angle substitution.

Next we present an alternative and simpler solution to this equation. We make two simple
trigonometric substitutions based on the figure below.

Clearly from this figure we have:

E : F
siny =

VE’+F? E>+F?

cosy =

In the original equation we divide by VE* +F” and rearrange:

cos O+ sinf =

E F -G
VE’ +F? VE* +F° VE* +F°

The two simple trigonometric substitutions yield:

-G

VE* +F?

Applying the sum-of-angles formula cos(a+b) = cosacosbFsinasinb yields:

cosdcosiy +sinfsiny =
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-G

cos(0—y)=—
E°+F°

And so the solution for @1is:

6,=yt cos”' {i}

VE* +F?

f
E

and the quadrant-specific inverse tangent function atan2 must be used in the above expression for w.

where

There are two solutions for &, indicated by the subscripts 1,2, since the inverse cosine function is
double-valued. Both solutions are correct. We expected these two solutions from the tangent-half-angle
substitution approach. They correspond to the elbow-up and elbow-down solutions (the engineer must
determine which is which) for the planar 3R robot IPK solution.

For real solutions for &to exist, we must have

—lsisl or 12L2—1

VE’+F? VE® +F?

If this condition is violated for the planar 3R robot, this means that the given input pose X3, y3, ¢ is beyond
the robot workspace limits.
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Second alternate solution method

For the planar 3R robot IPK problem we now present a second alternate solution method that does
not initially result in the equation form Ecos@+Fsind+G=0. We still square and add the XY position
equations, but without isolating the é terms first. Here are the original XY equations:

X, =L, cos g + L, cos(6, +6,)
Y, =L,sing +L,sin(6 +6,)

Squaring and adding these equations as-is yields:

x; =L cos” 8, +2L,L, cos b, cos(6, +6,) + L cos’ (6, +6,)

y: =Lisin’ 6, +2L,L, sin 6, sin(6, + 6,) + L sin*(6, + 0,)

X;+Y; =L+ L5 +2L,L, [cos 6 cos(b, +6,) +sin 6, sin(6, +6,)]

Applying the sum-of-angles formula cos(a+b)=cosacosbFsinasinb yields:

X +Y; =L+ L +2L L, cos(6, — (6, +6,)
=L+ L +2L L, cos(-6,)
=L +L +2LL, cosé,

Where we have also used the trigonometric identity cos(-a)=cosa.

We must deal with trigonometric uncertainty (double-valued inverse trigonometric functions) by
using COS and Sin together, rather than just cos. The above equation yields:

RS LT
oLL

cost, =

From the trigonometric identity cos’ 8, +sin” &, =1 we obtain:

sin@, =+,/1-cos’ 6,
The solution for 6; is then:
0, =atan2(+sin é,,cosb,)

The expected two solution sets (elbow-up and elbow-down) come from the on the £ square root
in the sind, term.
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Knowing & in this second alternative IPK solution method, we must return to the original XY
equations and solve for 1.

X, =L, cosd +L,cos(6 +6,) =L, cosf +L,(cosb cos,—sinf sinb,)
y, =L sing +L,sin(6 +6,) =L, sinb, +L,(sin g, cos &, +cos G, sinb,)

X, =(L, + L, cosd,)cosf —(L, siné,)sin g,
Y, =(L +L,cosd,)sin@ +(L,siné,)cosb,

X, =K cos 6, -k, sin 6, where k =L +L,cos6,

Yy, =K, sing, +K, cos 6, k, = L, siné,

Now, with & known, these two XY equations are not independent. Notice both have the form
Ecosg +Fsind +G=0. We know two methods to solve this type of equation (tangent half-angle

substitution, plus the cosy and siny simple trigonometric substitution). Either equation can be solved
for 61 and will yield identical results, one unique & for each 6 branch (elbow-up and elbow-down).

However, if we continue to use both equations, an interesting geometric interpretation will appear.
Let us make the following polar substitution, very similar to the previous cosy and siny simple

trigonometric substitution (see the figure below).

r=+yk’+k;

k =rcosy

where

K, =rsiny

k

1

We only use the positive square root term in  and the quadrant-specific inverse tangent function atan?2
must be used in the above expression for y.
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Applying this substitution to the XY equations yields:
X, =rcos@ cosy—rsing siny =rcos(f+y)
Yy, =rsin@ cosy+rcosd ssiny =rsin(f, +y)

We can form a ratio of the Y to the X equation to solve for i, one for each 6: value.

rsin(f +y) _Ys
rcos(6,+y) X

6 =atan2(y,,%,)—¥

The interesting geometric interpretation in the planar 3R IPK solution via this method is shown in
the figure below. The entire ki—k>—r triangle shown above is rotated with & (and leads & for the elbow-
down solution). r is the distance from the origin of fixed frame {0} to the origin of moving frame {3}.

This is why @1 was able to cancel out of the equations and leave only 6 for solving first in this

solution method. The length r from the origin of {0} to the origin of {3} is only a function of the elbow
joint angle & and does not depend on & or 6.
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5.3 Spatial PRP Cylindrical Robot IPK Solution

yA Front

Inverse Pose Kinematics Problem
Given the robot (the 9 constant DH Parameters) and[ ‘;T] , Or {OX 3} ={X Yy, 7, ¢},

Calculate the required joint values L,,8,,L,. The inverse pose equations come from the forward pose
expressions:
n, 0 r; p cpg 0 -—sp X co, 0 -sO, -L;so,
BT]: Ly 0 Ny Py sp 0 cog v, _ s¢, 0 cb, Lo,

0 -1 0 p| |0 -1 0 z| |0 -1 o0 L,
o 0 0 1/]/0 0 0 1|0 0 0 1

This robot has spatial translational motion, but its rotation is limited to the top-view plane. There is a

subspace of the general 6-dof pose, represented by [gT] or by {0X3} = {X3 Y, 7, ¢}T .

We have a problem — there are only 3 joints (n = 3) but there are m = 4 Cartesian values. This is an
overconstrained problem and no solution exists in general. A dependency exists among

{0X3} :{X3 Y, Z, ¢}T and thus all four cannot be commanded independently. Therefore, let us

command only 3 Cartesian values {OX3RED} ={0|:’3}={X3 Ys 23}T; we will treat this robot as a

translational freedom robot. ¢ is not independent but is related to X3 and y3. The three equations to solve
for the three unknowns are then taken only from the translational equations.
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Reduced (translation only) Cylindrical Robot Inverse Pose Kinematics Solution, m=n = 3:
X, =—L;s6, L=z
y;= Lo, = 0, = atan2(-X;, Y;)

4= L‘ L3:+\/X32+Y32

Mathematically, there are two solution sets. However, the —L3 solution is not a practical choice, so we
only show one solution set above. If —Ls is allowed, then @, +180° is the angle solution. This is not a

general spatial manipulator, i.e. {OF’3} and [ N R} cannot be specified independently.

Cylindrical Robot Inverse Pose Kinematics Examples

1) Given {0P3},calculate L.6,,L,.

X, -1
("R} =1y p=11.732
Z, 3

Answers (m and deg)

i branch Ly ) Ls
1 practical 3 30 2
2 impractical 3 210 —2

The first line is expected since this is the same position as the spatial PRP cylindrical robot Forward Pose
Kinematics Example 1. Now we must check the second solution set to ensure it is correct (substitute the

second, impractical, solution set into Forward Pose Kinematics and ensure the same {OPS} is obtained).

Also, for both cases you can calculate D R] — they will be different (why?).

2) Given {OI:’}} , calculate L,6,,L,.

X, 1
{ ’ Py } =1Y;7 =90
z, 2
Answers (m and deg)
i branch Ly ) Ls
1 practical 2 -90 1
2 impractical 2 90 —1

As mentioned earlier there is only one practical solution set (1) for the cylindrical robot. Solution set (2),
with the negative L3, is given in the above examples only for completeness.
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5.4 Pieper’s Solution Method

Decoupled Inverse Pose Kinematics Solution

Pieper proved that if a 6-dof robot has any three consecutive joint axes intersecting, there exists a
closed-form (analytical) solution to the inverse position kinematics. The majority of industrial robots are
in this category.

In particular, many robots have a spherical wrist, i.e. three wrist actuators that rotate about a axes
intersecting in a common point. In this case, the position and orientation sub-problems may be decoupled.
We solve for the first three joints first using the position vector input. Then we solve for the second three
joints next using the given orientation, based on the orientation caused by the first three joints. The given
position vector must point to the wrist point (the shared origin point of three consecutive wrist frames).
We can always transform any end-effector or other tool vector to this origin point, since there are no more
active joints beyond the last wrist joint.

PUMA Example (without details):

Given [2T] , calculate (6,,6,,6,,0,,0.,6,).

[T]=16,0.,6,.6,.6,,6,)

[21-]: |:2R(9],62,93,94,H5,96):' {0P6(91962963)}

Joints 4, 5, and 6 cannot affect the translation of the wrist origin point.

1) Translational equations: Given {°P6} , calculate (6,6,,6,) values (4 sets).

3 independent equations, 3 unknowns.

2) Rotational equations: Given [60 R] , and knowing (6,,6,,6,), calculate (6,,6,,6,) values (2 sets).

3 independent equations, 6 dependent equations, 3 unknowns.
T
[ (R(6,,65,6) = {R(6,6,,6) | [ (R]
4 sets of (6,6,,6,); 2 sets of (6,,6,,6,) for each. Therefore, there are 8 overall solutions to the

inverse position problem for the PUMA. Some solution sets may lie outside joint ranges. Generally one
would choose the closest solution to the previous position.
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We can use homogeneous transformation equations to isolate and solve for the various unknowns
in turn. I call this ‘peeling-off” homogeneous transformations matrices with unknowns to separate
variables. The approach is to multiply by the inverse component homogeneous transformation matrices
as a function of one unknown joint variable each. Below the details are not shown so you must try this
for yourself. The original FPK transform equation is the starting point for IPK, as always.

[T]=[r@][T@ ] T@ [T ][ Te)][TE)]

The left-hand-side [2T} is a set of valid given numbers, the input to the IPK problem. Inverting
the first matrix on the left yields:

[r@] [Tl=[me] ey ][ T [Te)][Te)]

from which we can solve for &1 and 5. Now we invert the homogeneous transformation matrix that
combines the first three matrices in the original equation.

@] [l=[men[Ten][Ten]

We can solve for 6> with @i and 6; already known. This completes the solution for the arm angle joints
(6,6,,6,), possible because the position vector {°P6} is only a function of (6,6,,6,), as stated earlier.

Now we must solve for the wrist joint angles (6,,6;,6,) knowing (6,,6,,6,). Performing one more
matrix inversion on the left will separate these unknowns sufficiently.

[men] [m]=[T@][Te)]

No we can isolate and solve for &, &, and 6 in turn.
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5.5 Spatial 8R NASA AAI ARMII Robot IPK Solution

X7, Xg

Inverse Pose Kinematics General Statement

Given: Calculate:

Since m = 6 (Cartesian dof) and n = § (joint dof) we have the underconstrained kinematically-
redundant case. There are infinite solutions (multiple as well). There are some great ways to make use
of this redundancy for performance optimization in addition to following commanded Cartesian
translational and rotational velocity trajectories. For inverse pose purposes we will here simplify instead

and lock out the redundancy so that m = n = 6; let us choose &, =6; =0 for all motion to accomplish this.

Then we have a determined Inverse Pose Kinematics problem with finite solutions, still with multiple joint
angle solution sets.
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The Forward Pose Kinematics relationship is:

So, the first step should be to simplify the equations as much as possible by calculating the required [gT]

to achieve the commanded [ o7 ] :

The problem can be decoupled between the arm joints 1-4 and the wrist joints 5-8 since the ARMII has a
spherical wrist (all 4 wrist joint Cartesian coordinate frames share the same origin). See the previous
section that explained the Pieper results for the 6-axis PUMA robot.

Now, we will further simplify by ignoring the wrist joints 6-8 (5 is already locked to zero) and solve the
Inverse Pose Kinematics problem only for the arm joints 1,2, and 4. The full inverse solution is given in
Williams'.

Inverse Pose Kinematics Symbolic Solution for Arm Joints Only, with &, =0

Reduced problem statement
Given {BPS} ={X5 Y; ZS}T , calculate (6,,6,,0,),, for all possible solution sets i.

That is, with only three active joints, we can only specify three Cartesian objectives, in this case the XYZ
location of the origin of {5} with respect to origin of {B} (and expressed in the basis of {B}). Note that

{ BPs} = { BF’g} due to the spherical wrist.

The equations to solve for this problem come from the Forward Pose Kinematics relationships for
the ARMII robot, the translational portion only (further, with &, =0).

This equation yields (the derivation is left to student, use symbolic Forward Pose Kinematics):
Xs —C,(d;s, +d;s,,)

{ BPS} =1Ys (=178(ds8, +0s8,,) where
Z dg +d,c, +dsc,,

c,, =cos(b, +6,)
S,, =sin(6, +6,)

(Since &, =0 always, the Z axes of 2 and 4 are always parallel and we used the sum-of-angles trig

formulas.)

' R.L. Williams II, Kinematic Equations for Control of the Redundant Eight-Degree-of-Freedom Advanced Research Manipulator II,
NASA Technical Memorandum 4377, NASA Langley Research Center, Hampton, VA, July 1992.
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Solution Process

1. A ratio of the Y to X equations yields:

6, +180° is also a valid solution

2. Since 61 is now known (two values), we can modify the Y and Z equations.
y =%
Sl
where:
Z=1,—d,

Isolate the (6, +6,) terms:

Square and add to eliminate 6i:

The result is one equation in one unknown 6.

Ecosd,+Fsiné, +G=0

E=27d,
where F =2vd,
G=-Y>-Z?-d; +d:

We can solve this equation for 6 by using the Tangent Half-Angle Substitution. We presented this back
in the Inverse Pose Solution of the planar 3R robot; we solve for & (in that section, it was for 61).

Solve for 6 by inverting the original Tangent Half-Angle definition.
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Two 6 solutions result from the £ in the quadratic formula; both are correct (there are multiple
solutions — elbow up and elbow down). To find &, return to original (arranged) translational equations.

d5524 =Y - d332
d5C24 =Z _d3C2

Find the unique & for each 6: value (use the quadrant-specific atan2 function in MATLAB).

Solutions Summary

The solution is now complete for the ARMII robot reduced inverse pose problem (translational
joints only, plus &, =0).

There are multiple solutions since there are two values for 6. For each i, there are two values
for 6; for each valid (6,,6,), there is a unique &. So there are a total of four (6,6,,6,) solution sets for
this reduced problem. We can show this with the PUMA model (it’s not the same robot, but it has similar
joints when &, =0).

These four solution sets occur in a very special arrangement pattern, summarized in the table
below.

[ 6 6 & 64
1 6 0, 0 Os
2 (7| 922 0 —64
3 6,+180° | -0, 0 6
4 6, +180° -0, 0 —0s

In all numerical examples, you can check the results; plug all solution sets (8,,6,,6,) one at a time

into the Forward Pose solution and verify that all sets yield the same, commanded { ® PS} . You can also

calculate the associated [ER] . All of these resulting rotation matrices should be different (why?).



S8R ARMII Robot Translational Inverse Pose Kinematics Example

Given {BPS} , calculate (6,,6,,6,), 1=1,2,3,4.

x| [-0.6572

{°R}=1y;p=4-0.1159

z.| | 1.6952

Answers (deg)

i & & & A
1 10 20 0 30
2 10 46.6 0 -30
3 190 -46.6 0 30
4 190 -20 0 -30

Check all solution sets via Forward Pose Kinematics to ensure all yield the correct, commanded {

°P,

5
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7. Velocity Kinematics

7.8 Velocity Kinematics Example

Spatial 3P Cartesian Manipulator Velocity Example

22
d;?
’
vV
£z 1
Ffer
l EI\L?(L
@
Side view Top view
a) Forward Velocity Kinematics
“(x] To o 17(d] [d,
"X} =" [a){t) yi=|0 1 0[id,r=1d,
z| |1 0 of|d,| |d
b) Inverse Velocity Kinematics (analvtical result)
d] o o 17°(x) °(z
{L}:[OJ]*{OX} dz =0 1 0 = y
d| [1 0 0] |z X
¢) Singularity Analysis
‘OJ‘ = ‘ 'J‘ = ‘ ZJ‘ :‘3\]‘ =1 no possible singularities
d) Static Force Analysis
f1 o o 17°(F)] "[F
(=[] {°F) f,b=|0 1 0| JF,{= {F,
f, 1 0 0 F, F,
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7.9 Jacobian Matrix Expressed in Another Frame

Here the Jacobian matrix still relates the end-effector frame velocity with respect to the base frame.
But simpler analytical expressions are possible for the Jacobian matrix, by choosing an intermediate frame
to express the coordinates of the velocity vectors (different basis of expression).

foa e/ o
e g
]] [°3]{e} @ is not dependent on a frame (relative joint rates)

l[m [0]

0] [:R]][ ']
Planar 3R Robot

The Jacobian was derived in frame {0} (here we go to {3} instead of {H}).

_Llsl_LZSIZ _L2sl2 0
[°3]=| Le+Le, Le, 0

1 1 1

Ls, -Ls, 0 ¢ s 0

[1‘] ] =/L+Le, Le, O [OlR} =S 6 0

1 1 1 0 0 1
L;s, 0O O Chr S 0

, 2

[ J ] =iLe+L, L, 0 [0 RJ = e G

1 1 1 0 0

Ls,+Ls, Ls, O Cos S

|:3J ] =|Lcy+Lc, L, O [SR] = Sis G
1 1 1 0 0 1

[33 ] agrees with that derived in the third method above.
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7.10 Cartesian Transformation of Velocities and Wrenches

Here we show how to move velocity and wrench vectors (both translational and rotational) from
one point to another on a rotating rigid body. We can replace one vector with an equivalent vector acting
at a different point. For example, to calculate the velocity (or wrench) at the wrist to produce a desired
velocity (or wrench) at the hand.

Velocity Transformation

Here we find the equivalent velocity at {A} corresponding to a given desired motion of {B}. For
instance, {B} could be the hand frame {H} where we want motion and {A} would then be the last wrist
frame {n} for which the Jacobian matrix is derived.

Ve

Basic equations

Vs :{VA}JF{“)A}X{APB} {Va} :{VB}_{WB}X{APB} :{VB}+{APB}X{“)B}

reversing

{wa} ={w, {op) ={g }

All vectors must be expressed in same frame, choose {A}.
{{M}}_ [r] [*Pox][ 3R]
{fof) [ [0 [R]

)=l ]

LeR] ["R XJ[SR]]
[0]  [eR]

(]|

0 -p, B
Where [APB x} =l p, 0 —p, | is the cross product matrix.

- py Px 0



Velocity transformation example

Find the equivalent velocity at A corresponding to a given motion of B.

2.6 0.866 —0.5 0
{APB}:[I.S} [QR]{ 0.5 0.866 0]

0 0 0 1

0 0 1570866 —05 0] [0 0 1.5
[*P.x][4R]=| 0 0 -26] 05 0866 0|=0 0 -26
~15 26 0 0 0 1] (03 o0
Xp=[an ] {x)
[0.866 -0.5 0 0 0 151 3.366
0.5 0866 0 0 0 —26||1| |-3.834
A
Vafl o 0 1 0 3 oo | o
(o)) 10 0 0 086 -05 0 [lof | o
0 0 0 05 086 0 [[0 0
L0 0 0 0 0 12 2
Check {wp} ={ws} Vo) ={Vs ) —{@} x{r}
N [i j okl (1] (o 1
V=110 0 2/=11{-16}=1-5
o/ 3 0 of 0] [o] |0
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Pseudostatic Wrench Transformation

Here we find the equivalent wrench at {A} corresponding to a given wrench at {B}. For instance,
{B} could be the hand frame {H} where we want the wrench to be exerted and {A} would then be the last
wrist frame {n} for which the Jacobian matrix is derived.

e Me

Vo

AD

Basic equations

more properly, { “ FB}

Note [QTW] is a block-transpose of [QTV}; ie. [APB X}[Q R] is switched with [0].

There is a duality here. In the velocity transformation, the rotational term is unchanged, while in
the wrench transformation, the translational term is unchanged.



Wrench transformation example

Find the equivalent wrench at A corresponding to a given wrench at B.

1
Given: (Rl =11 (Mg} =
0

o O O

{ APB} ,[ QR],[ APB x][ QR] are the same as in the velocity example above.

A{W} :[QTW} B{W}

0866 05 0 0 0 0][1] (0366

05 086 0 0 0 01 [1366

"MEJ1 L0 o 1 0o o o|lo | o
{{MA}}_ 0 0 15 086 -05 0[]of | 0
0 0 26 05 0866 0[[0] | 0

0o 3 0o o o 1]lo [ 3

Check {Fy)={F} M, ={rx{F}
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The derivations and examples for both velocity and wrench transformations were for the inverse
case, i.e. given the end vector values {B}, calculate the vector values on the same rigid link, but inward

toward {A}.

We could easily adapt the derivations and transformations to perform the forward calculation, i.e.
given the inward vector values {A}, calculate the end vector values on the same rigid link, outward towards

{B}.
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8. Kinematically-Redundant Robots (KRRs)
8.2 Inverse Velocity (Resolved-Rate) Solution

8.2.1 Pseudoinverse-based

Alternate Particular Solution — satisfies primary task (satisfies Cartesian trajectory)

Based on Minimum Manipulator Kinetic Energy f = %{@}T [W ]{@}

[W] = [M (@)] ; The weighting matrix is the manipulator inertia tensor from robot dynamics

where [J]*:[M]_l[‘]]T ([J][M]_I[J]T)l

This Moore-Penrose pseudoinverse form is subject to singularities. Singular Value Decomposition
(SVD) would ameliorate this problem.

Homogeneous Solution

For optimization, choose z = {VH (@)}, where {H (©)} is an objective function of joint angles to

be minimized or maximized. Use K, >0 for maximization and K, <0 for minimization.

2
(0 -0,
Joint Limit Avoidance H,(®)= 2 :( IAg Gi J

Singularity Avoidance (Manipulability Maximization) H, (®)= ‘[J ][J ]T
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8.2.3 Klein and Huang’s Algorithm
This methods yields the same results as the pseudoinverse with gradient projection into the null-

space, but it is more efficient (less computations). Klein and Huang’s algorithm accomplishes the
particular and homogeneous solutions at the same time.

([DIRT )it ={X] k] fvH (@)}

solve {w} using Gaussian elimination, then:

{0} =[3] {w}+k{VH(0)}.

So much of the existing kinematically-redundant robot literature is dedicated to more efficient redundancy
resolution, but I think with today’s processors, this is no longer a problem.
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8.2.4 Singular Value Decomposition

Singular Value Decomposition (SVD) yields the same results as the pseudoinverse with gradient
projection into the null-space, but with singularity robustness. If [J] is less than full rank, the solution
cannot track arbitrary Cartesian trajectories, but SVD results are bounded so the motion can drive through
singularities, as opposed to yielding infinite joint rates at singularities.

[I]=[ulw]vT
[J] mx n Jacobian matrix
[Ul  mxn column orthogonal matrix

[W] nxn positive semi-definite diagonal matrix
[V] nxn orthogonal matrix

o] =[v][diag {Wij][u I

w; are the singular values of [J]. For underconstrained systems of equations, there will always be

n —m zero singular values, where n — m is the degree of redundancy. Any additional zero singular values

o . 1 . .
correspond to degeneracies in J. In the above expression, — is set to zero for w; =0 (ain’t math fun?!?)
W.
J

Both [U] and [V] are column-orthonormal (ignoring the last n —m columns of [U]). Matrix [V] is

also row-orthonormal, i.e.:
VIVI =[v] [V]=[1.]

[U][U ]T = [ Im]; however, [U ]T [U ] #* [ In] (see the SVD example)

Columns of U corresponding to nonzero w; are an orthonormal basis which spans the range of [J].

Columns of V corresponding to zero w; are an orthonormal basis for the null-space of [J].

Singular Value Decomposition (SVD) Example

= ~1.366 —0.500 —0.500
| 2366 1.866 0.866

)
[l=[V]w]V]
3467 0 0][0.786 —0.514 —0.3447
~0.430 0.903 0
[3]= 0 0420 0[[0.548 0836 0
0.903 0430 0
0 0][0288 —0.188 0.939
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9] - M{diag [Wiﬂ[u )

0.786 —-0.514 -0.344 | 0.288 0 0]/-0.430 0.903 —-1.205 -0.323
[J]*z 0.548 0.836 0 0 2.381 0] 0903 0.430|=| 1.732  1.000
0.288 -0.188 0.939 0 0 0 0 0 -0.441 -0.118

L . 1 . : .
In the above example, the third singular value is zero, so — is set to zero (N — m singular values will
W.
j
always be zero). This result agrees with [J] from the Moore-Penrose pseudoinverse formula given

above.

100
[U]L] =[1.] [UT'[U]=|0 1 0]=1, VIVI =[] Iv]=[1,]
000

8.2.5 Generalized Inverses
A generalized inverse of a matrix gives an answer to the linear problem even when a true matrix

inverse does not exist (underconstrained, overconstrained, or row-rank-deficient). Mathematically, [G] is
a generalized inverse of matrix [A] if

[Alle][Al=[c]

The Moore-Penrose pseudoinverse is just one possible generalized inverse of a matrix. It is the
one applied most often to redundancy resolution of manipulators. In addition to the above relationship,
the following relationships hold for the Moore-Penrose pseudoinverse.

[Gl[Al[c]=[A]

where () indicates the complex conjugate transpose.
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9. Parallel Robots

9.1 Introduction

Serial vs. Parallel Cartesian Sensitivity

A planar 2-dof 2R serial robot is compared with a planar 2-dof 5R five-bar parallel robot of equal
link lengths, with regards to Cartesian sensitivity. i.e. assuming a joint sensing uncertainty of *1° for all
active and passive joints, the following plots show the Cartesian uncertainty rectangles, but using Forward
Pose Kinematics (FPK) in each case.

The following two plots show that the workspace for the serial robot is much larger than that of
the parallel robot, when equal link lengths is the standard. However, these plots also show that the
Cartesian sensitivity is much less for the parallel robot than the serial robot.

For the same two robots, the next pair of plots show the same Cartesian sensitivity information,
zoomed into the same workspace subset. These plots show even more clearly the large advantage of the
parallel robot over the serial robot regarding Cartesian sensitivity due to +1° joint sensing uncertainty in
each case.
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9.2 Planar 2-dof Five-Bar Parallel Robot
9.2.4 Acceleration Kinematics
Step 1. The five-bar robot Position and Velocity Analyses must first be complete.

Step 2. Identify the five-bar robot acceleration parameters.

Qi =a, (i =2,3,4,5) is the absolute angular acceleration of link i. Ql =, =0 since link 1, the fixed
ground link, cannot rotate.

The velocity equations developed in the Planar 2-dof Five-Bar Parallel Robot Velocity Kinematics

section are the starting point for deriving the acceleration equations.

Forward Acceleration Kinematics

Given ri, 6, 12, I3, ra, rs; angles 6, 65, €s, and 65; angular rates 92,193,94,<95; plus actuator angular

accelerations 6,, 06,

Find desired end-effector translational acceleration B ={X y} , plus passive angular accelerations
0.0,

The acceleration equations come from the first time derivative of the velocity equations as shown below:

—I’292$2 - |’39383 = _rsgsss - r4‘9484

roc, +roc, = roc +roc,

_rzézsz - r2‘92202 - r3‘.9.353 - I’393203 = _rsésss - @95205 - l’4é434 - r4‘9'42C4
rzézcz - rzézzsz + G‘%% - r36.’3253 = rséscs - rsészss + I’4é4C4 - I‘494284

Since all links are rigid (i.e. no links are changing lengths), all f; =0 and F; =0, thus the eight XY

pairs of terms above represent the absolute tangential accelerations and absolute centripetal accelerations
at the endpoint of each link.

Gathering unknowns on the LHS, and substituting the following terms yields the following matrix-
vector equations, two linear equations in two unknowns 6, and 6,:
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a= rs,
=-Ls,

a bl[é C C =-rd,s, -r,0c, —r,0ic, + 1.0, +r.02c, +r6;c,
[d eHéL}:{F} d=-rc,
e= rgC,

F= réc,-r0s, —r0s, —r0.c, +r0s, +r0;s,

The solution of the above matrix-vector set of equations is:

Q:Ce—bF é4:aF_Cd
ae—hd ae—bd

With 6, and 6, now known, the end-effector translational acceleration B ={)'( y}T can be found either
from the link2/link3 dyad or the link5/link4 dyad; both yield identical results.

. . " . . . N " . "
5 X\ _ -1,6,s, -r,0,c, - 1,0,s, —r,6,C, B X\ _ -r,0;s, —-r0;c, —-r,0,s,—r,0,c,
-y ro,.c, —r,é:s, +r,o.c, —ro;s, -y rOC, —r,0:s, +r,0,c, —1,0;s,

Planar Five-Bar Parallel Robot Forward Acceleration singularity condition

When does the above forward acceleration solution fail? The forward acceleration coefficient
matrix is identical to the forward velocity coefficient matrix, which means the singularity conditions are
identical (i.e. when links 3 and 4 are collinear, corresponding to the branch boundary between the two
Forward Pose Kinematics solutions).

Inverse Acceleration Kinematics

Given ri1, 61, 12, 13, ra, rs; angles 6, 65, i, and 6s; angular rates 92,93,94,195; plus desired end-effector

translational acceleration B:{X y}

Find required actuator angular accelerations 52, 95 , plus passive angular accelerations 653 , 94

The actuator unknowns éz,és can be found independently from the two vector loop-closure
equations presented at the end of the Planar 2-dof Five-Bar Parallel Robot Forward Acceleration
Kinematics section. Passive unknown angular acceleration &, can be found along with 6,, and passive

unknown angular acceleration 634 can be found along with 05 The two independent equations for end-

effector acceleration B= {X y} are repeated below, written in matrix-vector form:



. o .
{ —rs, —Is, H@} ~ {x +r,0%c, +1,0; c3}
.. - .. 12 12
r,c, e, |6, y+1,0;s,+r6;s,

And the inverse acceleration solutions are:

XC, + Vs, + 1,67 cos(6, — 6,) +1,6;
r,sin(6, —6,)

6, =

é_—mfy%—wimq@—@ygﬁ
3 r,sin(6, - 6,)

43
. o -
s, s, H@} _ {x + 1,67, +1,0" 04}
. S S
r,.c, rCs | | 6, y+r.0;s, +1,0,s,

KC, + Vs, + 1,07 cos(6, —6,) +1,6?

6,= :
r,sin(6, —6,)

P .62 cos(6, —6,)—1,6;
’ I, sin(6, —6,)

Planar Five-Bar Parallel Robot Inverse Acceleration singularity condition

When does the above inverse acceleration solution fail? The inverse acceleration coefficient
matrices are identical to the inverse velocity coefficient matrices, which means the singularity conditions
are identical (i.e. when links 2 and 3 are collinear or when links 4 and 5 are collinear, corresponding to
the branch boundaries between the two Inverse Pose Kinematics solution branches for the link2/1ink3 dyad

and also for the link5/link4 dyad).

Planar Five-Bar Parallel Robot Acceleration Kinematics for active joints only

Again, it is possible to solve the Forward and Inverse Acceleration Kinematics problem for the
planar five-bar parallel robot, ignoring the passive joints velocity variables 03 and é4. This is similar to
that subsection presented in the Planar 2-dof Five-Bar Parallel Robot Velocity Section and is left to the

interested reader.



9.2.5 Inverse Dynamics

Step 1. The five-bar robot Position, Velocity, and Acceleration Analyses must first be complete.

Step 2. Draw the five-bar robot free-body diagrams (FBDs)

Five-Bar Parallel Robot Free-Body Diagrams (FBDs)

F;  unknown vector internal joint force of link i acting on link j.

r; known moment arm vector pointing to the joint connection with link i from the CG of link j.

44



45

Step 3. State the Problem

Given:
The robot (kinematic parameters I,,6,1,,1;,I,,I;, masses M,,m,,m,, M., center-of-mass vectors

CG,,CG,,CG,,CG,, mass moments of inertia l.,,, 15,5, ler4, lors ), kinematic motion angles 6,,6,,6,,06;,
angular velocities ,0,,0,,0., angular accelerations 6,,0,,0,,0;, translational CG accelerations

A Asss Asss Ass » and external end-effector force F

Find:
The driving actuator torques 7, and 7, plus internal joint forces F,,, Fy,, F 5, Fs, Fis

Count the number of scalar unknowns and the number of scalar equations:
e Since this is planar problem there are three scalar dynamics equations per moving link (two forces
XY from Newton’s Second Law and one moment Z from Euler’s Rotational Dynamics Equation)

and there are four moving links, for a total of 3x4 = 12 scalar equations.

e Two vector torques (of one component each) and ten vector internal joint forces (of two
components each) are identified above, for a total of 1+1+2x5 = 12 scalar unknowns.

Therefore, this problem can be solved.



Step 4. Derive the Newton-Euler Dynamics Equations

Newton's Second Law

Link 2
ZEz =Fy,-Fy=mA,

Link 3
ZE3 =Fy—Fyu+Fe=mAg

Link 4

ZE4 =Fy,—F,=mA,

Link 5

ZES Fis —Fs =M A

Euler's Rotational Dynamics Equation

Link 2
ZMG2 =T, +Ip xEy -1, xEy =gy,

Link 3
ZM(B =l xEy =T xBy 4T xEBe =gy, 4

Link 4
ZMG4 =ryxFy—IyxFy=lg,,

Link 5
ZMGZ =T+ sXEs =T x By =g, a5
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Step 5. Derive the XYZ scalar dynamics equations from the vector dynamics equations.

For each moving link we obtain

e Two XY force component equations from Newton’s Second Law
¢ One Z moment equation from Euler’s Rotational Dynamics Equation

Link 2

F32x - lex = mzAszx

F32Y - F21Y =m, Abzv

7, + Ny Froy — Ty Foox) — (hox Foy =My Foix) = lepz @,

Link 3
I:43x - F32x = m3AG3x - FEX

F43Y - F32Y =m, AG3Y - FEY

(r43x F43Y - r43\( |:43>< ) - (rzz.x F32Y - r23\( F3zx ) = IG32a3 - r43x FEY + r43\( FEX

Link 4
I:14x - I:43x = m4As4x
I:14\( - I:43\( = 4'%4\(

(r54x F54Y - r54\( F54x ) _(r34x F43Y - r34\( F43x ) = Ic;4za4

Link 5
I:15x - I:54x = mspbsx
F15\( - F54Y = ms'AbsY

s+ (rISX FISY - r15\( F15x ) _(r45x F54Y - r45\( F54x ) = Ieszas
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Step 5. Derive the XYZ scalar dynamics equations (cont.)

Write these XYZ scalar equations in matrix/vector form.

Five-bar robot inverse dynamics 12x12 matrix-vector equation

-1 0 0 0 0 0 0 0 0 0 0](F, m, Ay
0 -1 0 0 0 0 0 0 0 0 O||Fy m, A,y
Moy —Tox  —hyy Fox 0 0 0 0 0 0 1 0 F32x IGzzaz
O O _1 0 l 0 0 O O O O 0 F32Y m3'%3x - FEX
0 0 0 -1 0 1 0 0 0 0 0 0f]|F;y m, A, — Fey
0 0 My —ix Ty Fisx 0 0 0 0 00 F43Y _ IGSZa3 —liax FEY + iy FEX
0 0 0 0 -1 0 1 0 0 0 0 0]k m, Ag,x
0 0 0 0 0 -1 0 1 0 0 0 Of|Fy m, A .y
0 0 0 0 Gy —ux sy Fsax 0 0 00 I:15 X I G4z
0 0 0 0 0 0 -1 0 1 0 0 O||FRy M, Ag sy
0 0 0 0 0 0 0 -1 0 1 00 7, m, A,
| 0 0 0 0 0 0 Lsy  —Tsx  —Tsy Nsx O 1] 7 lesz s




Step 6. Solve for the unknowns

The coefficient matrix [A] is dependent on geometry (through the moment arms, which are dependent on
the angles from kinematics solutions). The known vector {b} is dependent on inertial terms, gravity, and
the given external forces and moments. {v} is the vector of unknowns.

Solution by matrix inversion {v}= [A]f1 {b}

MATLAB v = inv(A)*b; % Solution via matrix Inverse

Using Gaussian elimination is more efficient and robust to solve for V.

MATLAB v = A\b; % Solution via Gaussian elimination

The solution to the unknown internal forces and input torque are contained in the components of V. To
save these values for plotting later, use the following MATLAB code, inside the for 1 loop.

F2ix(i) = v(1);
Fly(1) = v(2);
F15y(i) = v(10);
tau2(i) = v(11);
taus5(1) = v(12);

Terms for the matrix-vector equation

Absolute translational center-of-gravity accelerations

. 2
A - Asax | | —Rg,a,sin 0, — Ry, 0, cos b,
22G2 T - .
A,y Re,@, c0s 0, — Ry, ] sin 6,
. 2 . 2
A Assx | |—ha,sinb, —r,e; cos 8, — Ry, sin 0; — Ry 05 cos 6,
22G3 T - . .
Assy I,a, cos 0, — I,@; sin 0, + Ry, cos 8, — Ry,@; sin 0,
: 2 : 2
A Asix | | —Nassin 6 —rowg cos O — Rg,a, sin 6, — Ry, 0, cos 0,
2G4 - . .
Ay ra, cos 6, — rw; sin 6, + R,,a, cos §, — R, w; sin 6,

EA R

{AGSX } B { —Rgsa, sin 0 — Ry w? cos b, }

2 .
Assy Resa, cos 05 — R, w5 sin O,

where Ra = / 2 for uniformly-distributed homogeneous material with regular geometry.



Moment arm position vectors
rZ

——=cos 0.
x| ) 2 ?
r, = =
r12Y r2

Y sin G,

J

—=cosé
x| )2 ?
Iy = =
Moy n

5 sin @,

n

——=¢0s 6.
x| ] 2 ’
Iy= =
Day L.

5 sin &,

r
= cos b,
x| 2
V= =
r43Y I

ésin o,

L

Is,

Fys

:

{

{
{

I'-34X

I’.34Y

54X

54Y

r-ISX

15Y

r-45 X

r45Y

}

}
}

}
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—-cos 0,

—sinf,

r
——cosd,
2

r, .
——sin 6,
2

——=cos &,

——=sin b,

,
= cos 0,
2

r, .
Essm 0,
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9.3 Intersection of Two Circles

This solution is very useful for many planar mechanisms kinematics problems, the IPK solution
of the planar 3R robot, plus for many planar parallel robot kinematics problems.

The two circles must be totally general (i.e. any centers and any radii). The use of a different
coordinate frame, coordinate transformations, and homogeneous transformation matrix concepts from
robotics can be used to simplify this problem dramatically!

The following notation is used for the two general circles:
circle 1 center (ax,ay) radius [

circle 2 center (Q(,h/) radius I,

The two circle equations are:
(x-a,)" +(y-a,)" =r’
(X=b)*+(y=b) =1

A simpler method is presented in the EE/ME 4290/5290 NotesBook. Here we solve the above equations
directly, without utilizing that transformation approach.

Expanding these two equations, and subtracting the second one from the first yields (note the
squared unknowns have been eliminated): y as a function of X:

y=dx+e

where:
_ (b, —a,)
- (b,-a)
i’ —r)+bl-a;+b; -a;
2(b, —a,)

Substituting this function for y into the first circle equation allows us to solve for x:
ax’ +bx+c=0

where:
a=1+d’
b=2(de—-a, -a,d)

c=a;+a, +e’-2ae—r’

And so the solution is:

-b ++/b? —4ac
2a
%sz&2+e

X2 =

Note that these two (X,y) solution points are expressed in the coordinates of the one reference frame {0}.
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9.4 Planar 3-RPR Manipulator

9.4.1 Planar 3-RPR Manipulator Inverse Pose Klnematlcs

JKV@'
-

Planar 3-RPR Manipulator Kinematic Diagram

Inverse Pose Kinematics (for pose control)
Given: X,Y,¢

Find: L.L.L

Vector loop-closure equations:

P+ IR = {"A}+{"L}} i=1,2,3

The vector loop-closure equations are rewritten below:

ERRENNEN TSRO,

The inverse pose solution is straight-forward, found independently for each of the three legs. The
Euclidean norm is used in the equations below.

{OPH}+[£R]{HPCi}—{°Ai}H i=1,2,3

We can also calculate the intermediate passive joint variables Q, @,@, (independently for each of the three

-l

1)-

legs) for use in velocity and dynamics analyses. The quadrant-specific atan2 function must be used in the
equations below.

C. — A
6, =tan™' {cy—zy} i=1,2,3
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9.4.2 Planar 3-RPR Manipulator Forward Pose Kinematics

3-RPR parallel robot Forward Pose Kinematics (for simulation and sensor-based control)

Given: L,L,L

Find: X,Y,¢

This is a coupled, nonlinear problem to solve — it is difficult to solve and multiple solutions generally
exist, like the Inverse Pose Kinematics problem for serial robots. We use the same vector loop-closure
equations from Inverse Pose Kinematics, repeated and with details filled in below:

UL = "R+ SR]{"R | -{"A )
fel={ehfe ]l -]

Considering all three legs simultaneously (the problem is coupled and nonlinear), these represent six scalar
equations in the six unknowns X, Y, &, ‘91 ) 92, 93

i=1,2,3

We can use the Newton-Raphson numerical iteration technique to solve this Forward Pose
Kinematics Problem. We can directly solve the above six equations for the six unknowns.

I‘icgi = X+C¢Hcix - S¢Hciy - OAX

LiSH.:y+S¢HC. +C¢HC. _oA1 i=1,2,3
! ix iy y

However, we don’t always need the intermediate variables Q,@,@ (also, we can calculate these

angles later, using Inverse Pose Kinematics, if required for velocity, dynamics, or computer simulation).
So, to simplify the Forward Pose Kinematics Problem, square and add each XY equation pair (for all three

legs) to eliminate the intermediate variables Q, @,@ Then we will have three equations to solve for the

three primary unknowns x,y,¢ . This problem is solved via the Newton-Raphson iterative numerical
method in Section 9.5.

2 2 2 2 2 2 2
X“+y + Aix + Aiy + Cix + Ciy - Li - 2(XAix + yAiy) + 2C¢(XCix + yCiy - AixCix - Aiyciy)
+2s¢(—xC;, + yC, + A,C;,, —A,C,) =0

ix iy iy~ ix

i=1,2,3

where known constants A, OAy, "C,, HCiy were shortened to A, A,C;,C,, for clarity.
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Alternate analytical 3-RPR manipulator forward pose solution

This 3-RPR robot forward pose problem is equivalent to finding the assembly configurations of a
four-bar mechanism with known input/output link lengths L1, L2 and an RR constraining dyad of known
length L3. By itself the four-bar mechanism has infinite assembly configurations because it has one-dof.

RR dyad A3Q3 constrains the mechanism to a statically-determinate structure of 0-dof. Point _Q defines
a four-bar coupler curve which is a tricircular sextic (sixth-degree algebraic curve) that has a maximum

of six intersections with the circle of radius L3 centered at fg (Hunt, 1990).

Figure:

Branch AC1C2A2 is a 4-bar mechanism with input angle & and output angle 6 (both unknowns).
With given lengths L1 and Lo, this four-bar mechanism has 1-dof, and it can trace out a coupler curve for
point Cs in the plane. In general, this coupler curve is a tricircular sextic. The forward pose kinematics
solution may be found by intersecting leg %Cj (a circle of given radius L3, centered at known centerpoint

A3) with the coupler curve. There are at most six intersections between a circle and tricircular sextic and
so there may be up to six real multiple solutions to the 3-RPR parallel robot forward pose kinematics
problem. There are always six solutions, but 0, 2, 4, or 6 of these will be real, depending on the
commanded configuration and robot geometry.



56
9.4.3 Planar 3-RPR Manipulator Velocity Kinematics
First the pose configuration variables must all be known. Then we can define and solve two problems.

Forward velocity kinematics (for simulation)

Given: L1, LZ, L3

Find: XY, @, where @, =¢3

Inverse velocity kinematics (for resolved-rate control)

Given: XY,q,

Find: L,L, L

In both cases intermediate passive joint rate unknowns 6,6,6 are involved. Both velocity

kinematics problems use the same rate equations; we will derive these from looking at the three single
RPR legs separately (meeting at the end-effector). Here is the figure for the it leg:

Planar 3-RPR Manipulator Velocity Diagram, leg i

As usual, the velocity equations will be obtained by a time derivative of the applicable pose equations.
The vector loop-closure equation for leg i is:

(0P, 1= {°A )+ {°L 1+ "L, ] =123
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The XY component equations are:

x="A, +Lco +L, cos(6,+ f)

A . i=1,2.3
y="A,+Liso +L,sin(b + S;)

and the angle equation is:
P+7.=a+p i=1,2,3

S for use in velocity equations:

‘91+181 =¢+7/1
O, +p,=¢+y, +120°
O, +p, =9 +270°

These S relationships assume symmetry, with an equilateral end-effector triangle having

n=r=r,=30.
The velocity equations for one RPR leg are obtained from the first time derivatives of the XY and
angle equations.

X= _Liseiéi + Licei — Ly sin(@, + )(‘9. + ﬁ.)
y= LcOO +Ls6 +L,cos(6,+ )6 + ) i=1,2,3
¢ = 9. + :Bi

These equations are written in matrix-vector form to yield the RPR leg Jacobian matrix.

K] [-LsG-Lysin@+4) 0, —L,sin@+5)][4
y=| LCO +Lycos(d+p) s6 Liscos(6, +5) |3 L =123
o, 1 0 1 B

Written in compact notation:

{(X}=[51{n} i=1,2,3
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{X} ={x vy o, }T is the same for all three legs (the Cartesian end-effector rates). {p,} includes one

active and two passive joint rates for each of the three RPR legs, i =1,2,3. Let us now find the overall
robot Jacobian matrix, using only active rates and ignoring the passive rates. Invert the leg Jacobian
matrix symbolically:

6] |L L L |[x
L= 8 8 Lusp
Bl |6 =6 | L |le
L. L

s, o8 ~Luch |

<

i=1,2,3

Clearly the only singularity condition for this operation is when L, =0, which is generally impossible by
design for the 3-RPR parallel robot.

Extract only the active joint row of this result and assemble all three active joint rows into the
overall robot Jacobian matrix:

L) [e6 6 Lysh[x
Lz =0, s, Ly,SB, | Y
L, cdy S0 Lsp |,

This above equation solves the Inverse Velocity Problem. No inversion is required and so the Inverse
Velocity problem is never singular. Above it is expressed in compact notation. Note inverse velocity
Jacobian matrix [M] is closely related to the Newton-Raphson Jacobian matrix [Jnr] from the numerical
FPK solution.

Forward Velocity Problem

This problem is obtained by inverting the Inverse Velocity Solution:
Vgt (x
(X =M J{L)

Ironically, it is the Forward Velocity Problem that is subject to singularities for parallel robots.
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Example Symbolic MATLAB Code

Here is the MATLAB code that was used to symbolically invert the RPR leg Jacobian matrix as
presented above. Symbolic computing has a lot of power in robot kinematics, dynamics, and control.

%
% Symbolic MATLAB code to invert the RPR leg Jacobian
%

clear; clc;

% Declare symbolic variables
L = sym("L™);

LH = sym(°LH");

tl = sym("tl");

bl = sym("bl");

cl = sym("cos(tl)");

sl = sym("sin(tl)");

cp = sym("cos(tl+bl)");
sp = sym("sin(tl+bl)");
% Jacobian elements
J1l1 = -L*sl-LH*sp;

J21 = L*cl+LH*cp;

J13 = -LH*sp;

J23 = LH*cp;

% Jacobian matrix

J = sym([J11 c1 j13;j21 s1 j23;1 0 1]);

% Invert
Jinv = 1nv(Jd);

% Simplify
Jinvsimp = simple(Jinv);

% Check

Identl = simple(Jinvsimp * J);
Ident2 = simple(Jd * Jinvsimp);

Note: the first four lines of the declaration statements of the m-code above may be replaced succinctly
with:

syms L LH t1 bl;
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9.5 Newton-Raphson Method

The Newton-Raphson Method involves numerical iteration to solve coupled sets of n nonlinear
equations (algebraic/transcendental — not ODEs) in n unknowns. It requires a good initial guess of the
solution to get started and it only yields one of the possible multiple solutions. The Newton-Raphson
method is an extension of Newton’s single function/single variable root-finding technique to n functions
and n variables. The following is the form of the given functions to solve.

(R} ={0)
where the n functions are {F(X)} = { FX) KRX) -+ F, (X)}T

and the n variables are (Xp={x % - x }T

Perform a Taylor Series Expansion of {F} about {X}:

R ({X}+{6X})=F ({X )+§27Fx+o({5xz}) P12 n

Where [J ] [ NR(X)] {_} is the Newton-Raphson Jacobian Matrix, a multi-dimensional form of
X.

]
the derivative and a function of {X}. If {5 X} is small, the higher-order terms O({&Xz}) from the

expansion are negligible. For solution, we require:
F({X}+{sX})=0 i=1,2,-,n

Now with O ({6X2}) — 0 we have:
oF,

R (X)+(0)) = R (%) 3 0%, = R () [ {0}~ 0 R

j=1 j

So to calculate the required correction factor X at each solution iteration step, we must solve

{F({X})} +[Iwe [{oX} =10} -
{oX}=-[3] {F({x})]

Solution via Gaussian elimination on [J . ]{6X} = —{F({X})} is preferable numerically, since this is

more efficient and more robust than matrix inversion.
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Newton-Raphson Method Algorithm Summary

0) Establish the functions and variables to solve for: {F ({ X})} ={0}

1) Make an initial guess to the solution: {X)}
2) Solve [y J({X, }){oX, } =~ {F ({X, })} for {5Xk } , where K is the iteration counter.

3) Update the current best guess for the solution: {Xk +1} :{Xk } +{§X¢<}

4) Iterate until H{&Xk }H < &, where we use the Euclidean norm and ¢1is a small, user-defined scalar

solution tolerance. Also halt the iteration if the number of steps becomes too high (which
means the solution is diverging). Generally less than 10 iterations is required for even very
tight solution tolerances.

If the initial guess to the solution {XO} is sufficiently close to an actual solution, the Newton-

Raphson technique guarantees quadratic convergence.

Now, for manipulator forward pose problems, the Newton-Raphson technique requires a good
initial guess to ensure convergence and yields only one of the multiple solutions. However, this does not
present any difficulty since the existing known pose configuration makes an excellent initial guess for the
next solution step (if the control rate is high, many cycles per second, the robot cannot move too far from
this known initial guess). Also, except in the case of singularities where the multiple solution branches
converge, the one resulting solution is generally the one you want, closest to the initial guess, most likely
the actual configuration of the real robot.

There is a very interesting and beautiful relationship between numerical pose solution and the
velocity problem for parallel robots. The Newton-Raphson Jacobian Matrix is nearly identical to the
Inverse Velocity Jacobian Matrix for parallel robots. (In the planar case it is identical, in the spatial it is

related very closely.) This reduces computation if you need both forward pose computation and inverse-
velocity-based resolved-rate control.

3-RPR manipulator forward pose kinematics solution

Use the Newton-Raphson numerical iteration method for solution, with:
T
{Xp={x vy ¢}

The three coupled, nonlinear, transcendental functions Fi are the squared and added equations for

each RPR leg, with |-,2 brought to the other side to equate the functions to zero.



Derive the required Newton-Raphson Jacobian Matrix.

o (60)) | 2

ok
&' =2x+2(C,cp—C, s9)—2A, i=1,2,3
oF,
a—y‘:2y+2(Cixs¢+Ciyc¢)—2Ay i=1,2,3
oF

—t= _2S¢(Xcix + yCiy B AxCix o AyC

8¢ iy) + 2C¢(_Xciy + yCix + AxCiy o AyCix) i=1,2,3

el renf]

iy
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Use i =1,2,3 inthe above definitions in the proper places in the overall Newton-Raphson Jacobian
Matrix. After the forward pose problem is solved at each motion step, we can calculate the intermediate

variables Q, @,@ as in inverse pose kinematics solution above.

Alternate 3-RPR manipulator forward pose Newton-Raphson solution

As we said, we could have solved the original six equations in the six unknowns including the

three intermediate variables Q,@,@. The functions are simpler (no squaring and adding) but the size of

the problem is doubled to i =1,2,---,6 . Below is the required Jacobian Matrix for this case, where the odd
functions are the X equations and the even functions are the Y equations; also the variable ordering is

X}={x vy ¢ 6 06, 6.

1 0 -Rss¢p—PFcp Lso 0 0

0 1 PB,cg-PR,s¢ -Lcob 0 0

1 0 -P,s¢g—P,co 0 L,so, 0
[ ((X})]= 0 1 Pocg-Psg 0 —Lcd, 0

1 0 -P,s¢g-P,co 0 0 L,sé,

0 1 P,co-—P,s¢ 0 0 L,co,
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9.6 Parallel Manipulator Workspace

Since reduced workspace of parallel robots (when compared to serial robots) is their chief
disadvantage, it becomes very important to determine the workspace of parallel robots and maximize it
through design.

There are two workspaces to consider (the same as for serial robots in Section 4.4 of the EE/ME
4290/5290 NotesBook).

1) reachable workspace is the volume in 3D space reachable by the end-effector in any
orientation
2) dexterous workspace is a subset of the reachable workspace because it is the volume

in 3D space reachable by the end-effector in all orientations.

For parallel robots, the dexterous workspace is almost always null since the rotation capability is
never full for all three Euler angles; therefore we usually define a reduced dexterous workspace wherein
all Euler angles can reach +30° or some other user-definable range.

3-RPR Example

For planar parallel robots we can generally find the reachable workspace using a geometric
method, figuring out what the end-effector can reach guided by each leg on its own, and then intersecting
the results.

~ -

N %

Example 3-RPR Reachable Workspace

For determination of the dexterous workspace, it is most convenient to numerically or
geometrically generate in MATLAB the reachable workspace for different ¢ values (end-effector
orientation) within the desired limits. Then stack these up and intersect them to find the dexterous

workspace, defined for a reduced desired rotational range iﬁ_,M,T .
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9.7 NIST RoboCrane Cable-Suspended Parallel Robot

The NIST RoboCrane? is a 6-dof, 6-cable-suspended robot that can position and orient its platform
with 6 Cartesian dof. The RoboCrane is classified as an underconstrained cable-suspended robot since
gravity is required in addition to the six active cables in order to try to maintain tension in all cables.

Like other cable-suspended robots, the RoboCrane shares the advantages of parallel robots vs.
serial robots; in addition, the parallel robot disadvantage of small workspace is wiped out by the
RoboCrane, which can have an arbitrarily-large translation workspace (though a very limited rotational
workspace like other parallel robots). Cable-suspended robots can be lighter, stiffer, and simpler than
other rigid-linked parallel robots. The main disadvantage of the RoboCrane and other cable-suspended
robots is that their cable tensions can only be actuated unidirectionally; in plain English, you can’t push a
rope. This poses a significant controls problem plus the ever-present danger of losing robot tension and
stiffness with one or more slack cables.

RoboCrane CAD Model with Serial Arm and Mobile Robots

frc.ri.cmu.edu

2 J. Albus, R. Bostelman, and N. Dagalakis, 1993, “The NIST RoboCrane”, Journal of National Institute of Standards and
Technology, 10(5): 709-724.
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RoboCrane Description

The six-dof RoboCrane is capable of XYZ translational and roll-pitch-yaw rotational control of its
moving platform within its workspace. As shown in the kinematics diagrams below, the RoboCrane is
essentially an inverted Stewart Platform parallel robot controlled by six active tensioning cables in place
of the six hydraulic actuators. The side length of the base equilateral triangle is Ss and the side length of
the moving platform equilateral triangle is Sp. At zero orientations, the moving platform equilateral
triangle is inverted with respect to the base equilateral triangle as shown.

The fixed base Cartesian reference frame is {0}, located on the ground, whose origin is the center
of the base equilateral triangle (from the top view). The base equilateral triangle is located at a height H

above the ground. The three ground-fixed cable connection points are 3 , 1=1,2.3 and the three moving-

platform-fixed cable connection points are Fi), 1=1,23. The six cables are connected between the ground-

fixed and platform-fixed cable connection points as shown. The six tensioning motors for RoboCrane can
be mounted on the ground (cables routed via pulleys at the top base frame), on the top base frame, or on
the moving platform itself. The moving platform Cartesian reference frame is {P}, whose origin is located

in the center of the platform equilateral triangle. At zero Euler angles, the orientation of {P} is identical
to that of {0}.

The fixed-base cable connection points B, are constant in the base frame {0} and the platform-

fixed cable connection points P, are constant in the base frame {P}:

Sg _Se
2 0 2
‘B, =<-h, 'B, =11, 'B,={-h,
H H H
s S
0 2 2
PP1: _IP PP2: hP PP3: hP
0 0 0
where:
3 3 3 3
hy =—s; lb=—-5; h, =—s; L =—s5;
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name meaning

S8 base equilateral triangle side

Sp platform equilateral triangle side

H height from ground to base triangle

hs planar distance from {0} to near base side

[ planar distance from {0} to a base vertex

hp planar distance from {P} to near platform side
lp planar distance from {P} to a platform vertex
m platform mass

Inverse Pose Kinematics (IPK) Solution

The 6-cable RoboCrane robot inverse pose kinematics (IPK) problem is stated: Given the desired
moving platform pose [ %T] , calculate the six active cable lengths Li, i =1,2,---6 . This IPK model assumes

straight cables (no sag) that are always in tension, and ignores cable mass and elasticity.

The IPK input [?,T] may be specified in terms of the desired vector location {OPP} of the origin

of moving frame {P} with respect to {0}, plus three angles representing the orientation of moving frame
{P} with respect to {0}. Choosing a-f-y, Z-Y-X Euler Angles (Craig, 2005), the associated orthonormal
rotation matrix is:

cacfl —SacCy+caspfSy SasSy+caspcy
[ 0 R] =|sacB cacy+sasPsy —casy+saspcy
—sp cpsy cpcy

Then the 4x4 homogeneous transformation matrix description of pose is (Craig, 2005):

o1]= [PR]{"P)

o 0 O 1

The solution to the RoboCrane IPK problem may be used as the basis for a pose control scheme,
executing pre-planned trajectories and other motions within its workspace. Like most cable-suspended
robots and many parallel robots in general, the RoboCrane IPK solution is straight-forward and poses no

computational challenge for real-time implementation. Given the desired moving cabin pose [%T], we
find the moving platform cable connection points Pi. Then the inverse pose solution consists simply of
calculating the cable lengths using the Euclidean norm of the appropriate vector differences between the

various moving and fixed cable connection points. The IPK solution yields a unique closed-form solution.
The moving cable connection points P1, P2, and P3 with respect to the fixed base frame {0} are:

R =[P J{"R) j=1.2.3
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where the { p j

a ‘1’ in the fourth row to make the 4x4 matrix multiplication valid. The RoboCrane straight-cable IPK
solution is then:

} vectors were given previously. Note we must augment each position vector above with

L =|"B,-"P, L, =|'B,-"P,
L, = OB2_0P2 L, = 0B2_0P3
L =(’B,-"P, L, =B, -"P,

Note the direction of the six cable length vectors above were chosen in the direction of positive cable
tensions.

RoboCrane Forward Pose Kinematics (FPK) Solution

The 6-cable RoboCrane forward pose kinematics (FPK) problem is stated: Given the six active
cable lengths Li, i =1,2,---6, calculate the resulting moving platform pose [‘;T} . The FPK solution for

cable-suspended robots and other parallel robots is generally very difficult. It requires the solution of
multiple coupled nonlinear (transcendental) algebraic equations, from the vector loop-closure equations.
Multiple valid solutions generally result.

Referring to the kinematics diagrams, we see that the RoboCrane FPK problem is identical to the
FPK solution for an upside-down 3-3 Stewart Platform (assuming straight cables always under positive

tension). The FPK solution is based on identifying 3 known triangles, BIF%BZ, BZF%&, and BsRB1
Construct a virtual link to Pj , perpendicular to base line 33< for each of these three triangles. Imagine
rotating each triangle (each virtual link) about 33< The FPK solution exists where all three PJ rotate

until Plpz, F%P , and P3Pl are each of the correct, known lengths Sp simultaneously. This solution was

presented by Dr. Bob®. The solution boils down to an 8"-order polynomial, meaning that there are
potentially 8 multiple solutions. Even pairs of some of these solutions may be imaginary.

3 R.L. Williams II, 1992, "Kinematics of an In-Parallel Actuated Manipulator Based on the Stewart Platform Mechanism",
NASA Technical Memorandum 107585, NASA Langley Research Center, Hampton, VA.
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Figure 8. RoboCrane FPK Diagram

RoboCrane Pseudostatic Analysis

To maintain safe and stable control in all motions, all cable tensions must remain positive at all
times. Gravity acting on the moving platform is required to ensure that the six active cables remain in
tension, as long as the rotations are not too far from the nominal horizontal orientation. A pseudostatic
model is developed in this section and applied to the RoboCrane inverse statics solution.

Equations for Static Equilibrium

This section presents statics modeling for the six-cable-suspended RoboCrane robot. All six active
cables connect in parallel from the fixed base to the moving platform, as shown in the kinematics
diagrams. Again we assume straight cables (no sag) that are always in tension, and ignore cable mass and
elasticity. In pseudostatics it is assumed that the focus cabin accelerations and velocities are low enough
to justify ignoring inertial dynamic effects and use statics equations of equilibrium.

For static equilibrium the vector force sum and vector moment sum of the six active cable tensions
plus gravitational loading and external wrench acting on the focus cabin must balance to zero. The statics
free-body diagram for the moving platform is shown below, where CG indicates the center of gravity
location. The six active cable tension vectors are ti, i =1,2,---6.
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\ 4
mg
RoboCrane Statics Free-Body Diagram

The vector force and moment equations of static equilibrium are:

6
>t +mg+F,; =0

i=1

6
> m; + RP; xmg+ Mg, =0

i=1

where t Zﬂﬂ is the vector cable tension applied to the moving platform by the i active cable (in the

positive cable length direction L, as established in IPK); m is the moving platform mass;
g = {0 0 —g }T is the gravity vector; K5 is the external vector force exerted on the moving platform

by the environment; m, = [ SR]{ "P, } x{t;} is the moment due to the i" active cable tension ( P P, is the

moment arm from the moving platform control point P to the j™ active cable connection point, expressed
in {P} coordinates); rp_, is the position vector to the moving platform CG from the moving platform

control point P (the origin of {P}); and Mg is the external vector moment exerted on the moving

platform by the environment. Moments are summed about the moving platform control point P and all
vectors must be expressed in a common frame; {0} is chosen.

Now we derive the pseudostatics Jacobian matrix based on the vector force and moment statics
equations. Substituting the above details into the static equilibrium equations yields:

[S1{t} =~{Weq +Gj
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where {t}={t, t, - " is the vector of active cable tensions, {G}={mg [RPPyx mg}T is the
gravity wrench vector, {Wg,; } ={Fgr Mgy }T is the external wrench vector, and the statics Jacobian

matrix [S] is:

A A A A A A

L, L, L, L, L, L
Pl><I:1 P2><I:2 P2><I:3 P3><I:4 P3><I:5 Pl><I:6

[s]=
where P, ={"P;} =[ /R |{"P,}, j=1,2,3.

RoboCrane Inverse Pseudostatics Solution

The statics equations can be used in two ways. Given the active cable tensions {t} and the six

cable unit vectors L, from kinematics analysis, forward statics analysis uses the equations of static

equilibrium directly to verify statics equilibrium. For control, simulation, and valid-tension workspace
determination, the more useful problem is inverse statics analysis. This problem is stated: calculate the

required active cable tensions {t} given the focus cabin mass and pose, plus all ti. It is solved by

inverting the static equilibrium equations:
{t}=—[S]" {We, +G}

The statics Jacobian Matrix [S] is a square 6x6 matrix and hence the standard matrix inverse

applies in (11). A unique {t} solution is guaranteed if the RoboCrane robot is not in a singular pose.

Assuming pseudostatic motion, the inertia of the actuator shafts do not enter into the analysis and

the statics torque/tension relationship for each of the 6 actuators is % =Ft, i=1,2,---6, where 7; is the i

actuator torque, F is the i cable reel radius, and { is the i cable tension.
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RoboCrane Examples
For these examples, the RoboCrane dimensions are Sg = 10 m, Sp =3 m, H =8 m, and mp = 100

kg. All examples assume the platform CG is located at the origin of {P} so that " P, = {0 0 O}T . Also

there is zero external wrench {WEXT} .

Snapshot Example
Given {OPP} ={1 2 3}T m and {a p ]/} :{10° 6 4°} , the calculated IPK and inverse

statics results are:

L={7.080 8313 6203 5777 8494 8711} m

{t}={325.1 1252 3186 3524 76.1 1238)' N
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Trajectory Example
The moving platform control point {P} traces a circle of center { 0 0 4}T and radius 2 m, with

zero orientations {0! p 7/} = {0 0 0} . At the same time, the Z displacement goes through 2 entire

sine wave motions centered on Z =4 m with a 1 m amplitude.

Circular Trajectory
9 T . r . . T T 500,
8.5/ i i T, : L i 450} "
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L
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Lli
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Le
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9.8 Delta Parallel Robot Inverse and Forward Kinematics

Clavel’s 3-RUU Delta Robot* is arguably the most successful commercial parallel robot to date.
The left image below shows the original design from Clavel’s U.S. patent’, and the right photograph below
shows one commercial instantiation of the Delta Robot.

Delta Robot Design' ABB FlexPicker Delta Robot
www.abb.com

The Delta Robot has 4-degrees-of-freedom (dof), 3-dof for XYZ translation, plus a fourth inner leg
to control a single rotational freedom at the end-effector platform (about the axis perpendicular to the
platform). The remainder of this document will focus only on the 3-dof XYZ translation-only Delta Robot
since that is being widely applied by 3D printers and Arduino hobbyists.

Presented is a description of the 3-dof Delta Robot, followed by kinematics analysis including
analytical solutions for the inverse position kinematics problem and the forward position kinematics
problem, and then examples for both, snapshots and trajectories. The revolute-inputs 3-RUU and the
prismatic inputs 3-PUU Delta Robots are both covered.

This section is presented on-line:

ohio.edu/mechanical-faculty/williams/html/pdf/DeltaKin.pdf

4R. Clavel, 1991, “Conception d'un robot paralléle rapide a 4 degrés de liberté”, Ph.D. Thesis, EPFL, Lausanne, Switzerland.
> R. Clavel, 1990, “Device for the Movement and Positioning of an Element in Space”, U.S. Patent No. 4,976,582.
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9.9 Stewart Platform

The 6-UPS Stewart-Gough Platform, shown below, has seen significant practical applications
from flight simulators and entertainment, to haptic interfaces and general parallel robots.

6-dof Stewart Platform Parallel Robot

Please see the following link for Dr. Bob’s NASA Technical Memorandum presenting the
kinematics of the Stewart Platform:

ohio.edu/mechanical-faculty/williams/html/PDF/StewartPlatform.pdf
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10. Serial Robot Acceleration Kinematics

The acceleration vector is the first time derivative of the velocity vector (and the second time
derivative of the position vector). It is linear in acceleration terms but nonlinear in rate components. Both
Cartesian acceleration and velocity are vectors, with translational and rotational parts.

Acceleration Kinematics Analysis is useful for

e Resolved Acceleration Control

e Acceleration of any point on manipulator

e Moving objects in workspace — smooth trajectory generation
e Required for Dynamics

Translational Acceleration

‘ {iA j} is the translational acceleration of the origin of frame {j} with respect to reference frame

{i}, expressed in the basis (coordinates) of {k}.

Transport Theorem (Craig, 2005)
d A B A A A B
LRI =[ER Vol +{ e sR]{ ")

General five-part acceleration equation

Position

P ={"Pof+[ SR {°P)

Velocity

UV =R+ aR P [ SR JT°P)
V)= Vol + Ve +e)x{P|

(A} = S ([ Ve +[2R](V, ) +{ 0 [ 2R](R})
(A = (A} < [4R] (A +2{ X[ 2R]{ Vo |+ [ AR+ R ([P | <[ 4R]( P )
(A ={A}+H{A} +2{o}x{V} +{a} <P} +{a}x ({0} x{P})
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Rotational Acceleration
‘ {ia j } is the rotational acceleration of frame {j} with respect to reference frame {i}, expressed in

the basis (coordinates) of {k}. No angular orientation exists for which we can take the time derivative to
find the angular velocity. Instead we use relative velocity equations.

Rotational Velocity
{oc) ={*ou}+ [ 2R] ("o}

Rotational Acceleration
(fach=S({P0 ) +[ ER]{Pac) = {Pae} + S ([ 4R ]P0 )
(fac} = e} + [ 2R] (e +{ o, :

For vectors expressed in the local frame

rach=[8R]{ ae )+ [2R] T {Pac |+ [2R] 7 {"0n <[ ER] [}

—_——
X
@ >
Pu)
L
~
ES
—_— T >

Combined Translational and Rotational Acceleration

) {a}} faj="{"n\}

where both a and « are (3x1) vectors

{a}="{'av}

Acceleration Example

Planar 2R robot — acceleration of end-effector frame with respect to {0}, also expressed in {0}.

1) Craig (2005) acceleration recursion

Ll Lz C2 52 O
{'P2}={O} {ﬁ}:{o} [fR]z{Sz c, 0] [;R]=[|3]
0 0 0 0 1
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0 0 af=[RI({a xR+ ) x({afx{ "R ]) {12 )
4] ol

6 +0, 6, +0, c, s, O —Llfif —Llcz‘éf+Lls2‘§'?‘l
{a,}=|-s, ¢, 0[5 L (=1 Ls,0+Lc,f,

0 0

0 } (af=[3R]([Pa xR} +{afx( (o} xR} {72}

_LZ(Hl +92)2 - I—lcz‘é’l2 + L152é1

Pa}={ L@ +6)+Ls,0 +Lch
0

~L(5,6,+¢,6))— L, (5,,(6, + 6,) +¢,,(6, + 6,)")
{"a} =1 L(c6,—5601)+L,(c,,(6,+6,)—5,(6,+6,))
0

Rewrite for comparison to results in the next section.
() - {—Llsl -Ls,, —LZ::,IZHQ'1 } N {—Llcﬂ:l ~L,C,, (6, + QZ)H o }
Lc +L,c, Lec, |6 -L,s,6, —-L,s,(0,+6,)||(6,+86,)
The second term above can be written as

|:_L1C1‘91 - chlz(él + ‘92) _L2C12(91 + 92):HHI}
-L;s6, -L,s,(6,+6,) -L,s,(6,+6,)]||6,
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Acceleration Example (cont.)

Planar 2R robot — acceleration of the end-effector frame with respect to {0}, also expressed in {0}.
An alternative method is presented here.

2) Differentiation of rate equation
X} =[31{) Xy =01} +[3]1e)

Do in frame {0} —if in frame {2} or {3}, one must account for WXT .

_Llsl B LZSIZ _LZSIZ
[OJ]: L1C1+|—2C12 L2C12
1 1
. dJ,
-2 5
dt dt
W, 23,6 935d0, 9y db, By _$2,
dt 49 dt 4o, dt 20, dt d < a9 °

. _(L1C1 + L2C12)9:1 - L2C120:2 _LZCIZH:I - L2C12‘9:2
[°3 ]=| ~(Ls, + L6 - Ls,0, -L,s,6 - Ls,0,
0 0

_Llclél - L2C12 (‘91 +92) _chlz(él + 02)
|:O‘] :' = _Llslel - Lzslz(el + 92) _Lzslz(el + 92)

1

_Llsl - Lzslz _Lzslz g . § ’ i i
{OX} =| Lc +Lgc, L,Cp, {91 }"' -Ls,0 -Ls,(6+6,) -Ls,(6+6,)

_L1C191 - LZCIZ(él +92) _chlz(él +92) { . }
1 1 2 0 0

2

This yields the same result as before.
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Uses for general acceleration equation

)=

X
{X

i. Forward Acceleration Kinematics Analysis — {X} = [J]{@} +[J]{0} predicts the Cartesian

accelerations {X} given the joint rates and accelerations.

ii. Resolved Acceleration Control — like resolved rate, but acceleration is commanded instead of
velocity. Solve {9} =[37" ({x}—[J]{a}) and double integrate to get the commanded joint

angles.

iii. Dynamics equations — {0 } is required for the Newton/Euler dynamics recursion in the EE/ME

4290/5290 Supplement, Chapter 5. If acceleration is calculated via numerical differentiation,
numerical instability can result, so the analytical approach {0} =[37" ({ X } - [J ] {9}) is better.

Now, if inverse dynamics control is being used in the resolved-rate control algorithm framework,

assume {X} is constant and so {X} ={0} . In this case:

{o}=-D1 [ ]{9)

How can we find the time rate of change of the Jacobian matrix [J ] ? See the previous page for a specific

example.
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11. Serial Robot Dynamics

Kinematics is the study of motion without regard to forces.

Dynamics is the study of motion with regard to forces. It is the study of the relationship between
forces/torques and motion. Dynamics is composed of kinematics and kinetics.

a) Forward Dynamics (simulation) — given the actuator forces and torques, compute the resulting
motion (this requires the solution of highly coupled, nonlinear ODEs): Given {7}, calculate {9} , {6?} , {9 }

(all are N x 1 vectors).

b) Inverse Dynamics (control) — given the desired motion, calculate the actuator forces and
torques (this linear algebraic solution is much more straight-forward than Forward Dynamics): Given

{9},{9},{9} , calculate {7} (all N x 1 vectors).

Both problems require the N dynamic equations of motion, one for each link, which are highly coupled
and nonlinear. There are two basic methods for deriving the dynamic equations of motion.

e Newton-Euler recursion (force balance, including inertial forces with D'Alembert's principle).

e Lagrange-Euler formulation (energy method).

Kinetics
Translational Newton's Second Law
Inertial force at center of mass
Rotational Euler's Equation

Inertial moment anywhere on body

The kinematics terms {aCi } ,{a), } ,{Oti } must be moving with respect to an inertially-fixed frame.

The frame of expression {k} needn't be an inertially-fixed frame.

Assumptions
serial robot

rigid links
ignore actuator dynamics
no friction
no joint or link flexibility
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11.1 Inertia Tensor (Mass Distribution)

The inertia tensor is a spatial generalization of the planar scalar moment of inertia. Its units are
mass times distance? (kg-m?). The symmetric inertia tensor expressed at a given point A in the rigid body,
relative to frame {A} is:

Mass moments of inertia

=L 2o, =[] (e oty =TIy

Mass products of inertia

I, = ”jv Xy pdv I, = ”.[V xzpdv I, = j”v yzpdv

Principal moments of inertia

A certain orientation of the reference frame {A}, the principal axes, yields zero products of inertia.
The invariant eigenvalues of a general [*l] are the principal moments of inertia, and the eigenvectors are
the principal axes.

More interesting facts regarding inertia tensors

1) If two axes of the reference frame form a plane of symmetry for the mass distribution, the
products of inertia normal to this plane are zero.

2) Moments of inertia must be positive, products of inertia may be either sign.

3) The sum of the three moments of inertia are invariant under rotation transformations.

Parallel-axis theorem
We can obtain the mass moment of inertia tensor at any point {A} if we know the inertia tensor at

the center of mass {C} (assuming these two frames have the same orientation). P, ={X. VY. 2 }T is

the vector giving the location of the center of mass {C} from the origin of {A}.

Here are some example inertia tensor components using the parallel axis theorem.
Al _C 2 2
L, = 1, +m(x:+y¢)

AI =CI

Xy xy MXcYe

Here is the entire inertia tensor expressed in vector-matrix form using the parallel axis theorem.

=[] m (R {RYL]-{R IR |
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11.2 Newton-Euler Recursive Algorithm

This is a recursive approach (Craig, 2005) based on free-body diagrams (FBDs) to determine the
dynamics relationships link-by-link. Used numerically it can calculate the inverse dynamics solution

efficiently.

Free-body diagram of link i

{f.} internal force exerted on link i by link i-1.

{ni} internal moment exerted on link i by link i-1.

Inertial loads Newton and Euler translational and rotational dynamics equations

Force balance

Moment balance (about CGi) (using D'Alembert’s principle, the inertial force is —m{a}).
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Newton-Euler Recursive Algorithm Summary

This methods can be used to find the robot dynamics equations of motion. It can also be used to
directly solve the inverse dynamics problem numerically. The summary of equations below, from Craig
(2005), assume an all revolute-joint manipulator (prismatic joint dynamics have different equations).

Outward iteration for kinematics i:0—>N -1
(without regard for frames of expression, for clarity)

Velocities and accelerations (kinematics)

{o}+{Z..}6.
={a}+{o}x{Z..} 4., { b0l
{aj+{

{

a

a <R} + (o< ({0} R.))
B, b+ {a.ﬂ}x{'“am} {on b ({on ) {Pa})

)=
o}
)
{8}

Inertial loading (kinetics)

{Fi+1} =M, {aCiH}
(N =[O {on ) Hau <[ 1 (o)

Inward iteration for Kinetics I:N—>1
(without regard for frames of expression, for clarity)

Internal forces and moments

Inclusion of gravity forces

This is equivalent to a fictitious upward acceleration of 1g of the robot base, which accounts for
the downward acceleration due to gravity (i.e. this conveniently includes the weight of all links).
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11.3 Lagrange-Euler Energy Method
This is an alternative method to find the robot dynamics equations of motion. It requires only

translational and rotational link velocities, not accelerations. The Lagrangian is formed from the Kinetic
energy kK and potential energy u of the robot system.

L=k—-u=k(®,0)-u(®)

= om Ve Ve b o [ ] o)
Ui = Ugge —M; {Og}'{opm}
k(©,0)= ZN:ki u(@)):iui
Note
k(®, ®) :%{®}T [M(®)] {®} where [M (@)] is the manipulator mass matrix.

Dynamic equations of motion

These are found for each active joint from the following expression involving the Lagrangian, joint
variable, and actuator torque. Perform this equation N times, once for each joint variable i, to yield N
independent dynamics equations of motion.

daidL) oL _,
dt\ 06, ) o0,

This expression may be rewritten using L= k(®, ®)—U(®) )

dfok) ok ou_
dt\ 06, ) o0, oc6 '
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11.4 Simple Dynamics Example

Derive the dynamic equation of motion for a planar one-link 1R mechanism by three methods:
1) Sophomore dynamics method — FBD, force and moment dynamics balance.
2) Newton-Euler recursion.
3) Lagrange-Euler formulation.

1) Sophomore methods - FBD, force balance Free-Body Diagram




1) Sophomore methods — FBD, force balance (cont.)

> F =ma,

a) °F, =m(—£as€—£a)209j
2 2

°F = —mT"(ésm 6%cO)

X

Z F, =ma,

L L
b 'F,—mg=m| —acld—-—w’sf
) Remg | Saco- s
°F = L Geo- 670
y_mg+m5( cl—0°s0)
ZMZO:°I9:r—m7LgCH

c)
r=°|9+m7|'gc:9

where

O =Cl +md>=Cl,

A

mL?
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Simple Dynamics Example (cont.)

2) Newton-Euler recursion

Outward iteration i = 0 (the only iteration)

o o N

0
{an} —{g} to account for gravity

0




Inward iteration i =1 (the only iteration)

r:{'nl}-{lz]}

T:[M

+

mBj~ mL

0+—
2

Check with the sophomore dynamics method above.

cd —s6 0
{*t}=[R]{"f}=|s6 co 0
0 0 1

}n

L.
s@—— 6*
g 2

L ..
co+—60
g 2

0

gco

—£92c9—£950
2 2

—59239+£éc6’+g
2 2

0
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3) Lagrange-Euler formulation

0 l, 0 O
(g} =10 [“1]=|0 1, 0
0 o 0 1,
Kinetic and potential energy are scalars invariant with frame of expression — write K in {1} and u in {0}.
0 0 0
v} =150 {al{ "1 J{af={0p 0
o) (1,0
0
—co
Ime 1 ° i L
L U=0-mi—g =50+ =mg—sO
2 4 2 0 2 2
0
2
L:k—u:—eﬂ[lzz mLJ—ngse
4 2
i(ﬂj_ﬂ_
dt\ a0 )
2 2 oL L
AL _4 IZZ+mL d(a—l.'jzé IZZ+mL — =-mg_cd
2 4 dt\ o0 4 127 2

2
= Izz+mL é+m—|‘gc0
4 2

This result agrees with the sophomore and Newton-Euler recursion dynamics methods above to solve the
same problem.



11.5 Structure of Manipulator Dynamics Equations

State Space Equation

{z}=[M(©®)]{6}+{v(0.6)} +{G(®)}

[M (@)] N x N mass matrix; symmetric and positive definite

{V (®, @)} N x 1 vector of Coriolis and centripetal terms
{G(@)} N x 1 vector of gravity terms

Configuration Space Equation

{r}=[M(©)]{6]+[B(®)]{006] +[C(©)]{6*|+{G(O)}

[M (@)] N x N mass matrix; symmetric and positive definite
N ( N — 1) o .

[B(@)] N x Coriolis matrix

{006} N(NT_I)xl (66, 66, - 6,.6,)

[C(@)] N x N centripetal matrix

(0%} N x1 (6: 6r - 4\

{G(@)} N x 1 vector of gravity terms

Cartesian State Space Equation
{Fi=[M,@){X}+{V,(®,6)|+{G (©)]

[I\/IX(®)] N x N Cartesian mass matrix; symmetric and positive definite

{VX (CX G))} N x1 vector of Cartesian Coriolis and centripetal terms

{GX (@)} N x 1 vector of gravity terms in Cartesian space

T e M - {x}=[3]{6}
v©.0)=[17]((ve.)-[M@©@]1][3]{6) e
e.@)=[3]icE) (x}=[3]{e}+[31{8]

91
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11.6 Robot Dynamics Example

Here we summarize the dynamics equations of motion for the two-link planar 2R robot when
each link is modeled as a homogeneous rectangular solid of dimensions Li, hi, wi of mass mi.

Newton-Euler recursion with outward kinematics and inertial calculations, followed by inward
kinetics balances yields.

2 2
T, = |222 + m2L1L2C2 n m2|—2 01 n IZZ2 " m2|—2 9‘2 n M 9'2 n m2|_2C12 g
m, L 2 m,L5 ) ;i m,L, e, mL).
0= Izzl+|zzz+T+m2Ll+m2L1L2C2+T 491+ |m+ 5 + 4 92

o -5 )02 s (o Lis, )0, + M mLe, + 50 g

where |, =T—2(|—i2+h2).

These dynamics equations of motion are very complicated — imagine how much worse these
equations will be for a spatial 6-axis robot such as the PUMA industrial robot.
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State Space Representation

For the planar 2R robot, the dynamics equations of motion from the previous page are expressed
in state-space form below:

{}=[M(©®)]{6}+{v(©.0)} +{G(®)} {r}= {Tl} 16} - {HI }

2 ) 5
|ZZ1 + Izzz + m1L1 +m2|_|2 +m2|_l|_202 + m2L2 |222 + mlechz + mzl—z
[M(©)]= 4 2 4
| mbbe m,L> . m, L
222 2 4 222 4
(_ m, L] L252 jej +(—m2 |_1 Lzsz)éléz
V(0,0)! =
{ ( )} mzl—ll—zsz 32
2 o
ml_L'C1+ m, |—|C1 + m, LZCIZ
(c@)}=1 * 2 g
m2L2C12
2

Configuration Space Representation

For the planar 2R robot, the dynamics equations of motion from the previous page are expressed
in configuration-space form below.

{r}=[M(©)]{6]+[B(®)]{06] +[C(©)]{6| +{G(O)}

[M (®)] , {G(@)} same as above

(z@)feo}-| ™" a0

0
mZLlLZSZ
- O |fe
cO|ie’l= {}
[ ]{ } mZLlLZSZ 0 022
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Numerical Dynamics Example

For the planar 2R robot whose dynamics equations of motion were presented analytically above,
here we calculate the required torques (i.e. solve the inverse dynamics problem) to provide the commanded
motion at every time step in a resolved-rate control scheme. Identical results are obtained by both
analytical equations and numerical Newton/Euler recursion.

Given
Li=1.0m
Lo=0.5m

Both links are solid steel with mass density p = 7806 kg/ M and both have width and thickness

dimensions W=1t=15 cm. The revolute joints are assumed to be perfect, connecting the links at their very
edges (not physically possible, just a simplified model).

The initial robot configuration is

0{X}=0{§}=0{0(‘)5} (m/s)

The dynamics equations require the relative joint accelerations ¢ ; how do we find these? (See
the last page of the Acceleration Kinematics Section 10 in this EE/ME 4290/5290 NotesBook Supplement:

{6} =[J1]({X} —[J]{H}) In this example, {X}={0 0}".)

Simulate motion for 1 sec, with a control time step of 0.01 sec. The plots for various variables of
interest (joint angles, joint rates, joint accelerations, joint torques, and Cartesian pose) for this problem
are given on the following page.

In the last plot, note that the robot travels 0.5 m in the Yo direction in 1 sec (which agrees with the
constant commanded rate of 0.5 m/s). The robot does not move in X; ¢ must move to compensate for the
pure Y motion, but we cannot control ¢ independently with only two-dof. The first three plots are
kinematics terms related to the resolved-rate control scheme; they are inputs to the inverse dynamics
problem. The joint torques are calculated by the numerical recursive Newton-Euler inverse dynamics
algorithm. These are the joint torques necessary to move this robot’s inertia in the commanded manner.
Notice from the joint angles, joint rates, joint accelerations, and joint torques plots that the robot is
approaching the 6> = 0 singularity towards the end of this simulated motion.
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12. Robot Control Architectures

With the robotic kinematics and dynamics we have learned and simulated, we can simulate robot
control using various popular robot control architectures.

12.1 Inverse Pose Control Architecture

2o IPK [y gf(:q? o,

v

12.2 Inverse Velocity (Resolved-Rate) Control Architecture

@ S | & ~eowr Rcbot @ﬂ

— j(@)—-' el plomt

m—
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12.3 Inverse Dynamics Control Architecture

The inverse dynamics method is also called the computed torque control method, and it is also
called the feedback linearization control method.

In Chapter 4 we learned that the robot dynamics equations of motion are highly coupled and
nonlinear. Here they are in matrix/vector form.

{r}=[M(©)]{6} +{V(6,6)} +{F(©,0)} +{G(®)]

{7} vector of applied joint torques

[M (@)] N x N mass matrix; symmetric and positive definite
{V (©, @)} N x 1 vector of Coriolis and centripetal terms

{F(@, G))} N x1 vector of friction torques

{G(G))} N x 1 vector of gravity terms

{@} , {@} ,{@} N x1 joint angles, rates, and accelerations vectors

Computed Torque Control Architecture

The computed-torque control method is based on canceling the dynamics effects by using the
inverse dynamics method, in order to linearize the robot system for standard controller methods, such as
PID control.

®,

w
O
)
O
%

6,.6, .

pID— ¢+ |

- Inverse D'ynamics
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12.4 NASA Langley Telerobotics Resolved-Rate Control Architecture

Below is pictured the Intelligent Systems Research Laboratory (ISRL) at NASA Langley Research
Center, circa 1992.

Force-Reflecting Operator Station Dual PUMA Robots with Space Station Task
NASA Langley Research Center Telerobotics Laboratory (ISRL)
Below is shown the overall resolved-rate-based robot control architecture developed at NASA

Langley Research Center in the Automation Technology Branch, with Dr. Bob on the team, in the early
1990s. This controller architecture was novel and is still unique in robot control.

, | X#e Xromf | © % J 8 PID Telerobotic
Joystick = Controller | - System
\
Position Encoder Feedback
Controller '
FOIC? g Machine Vision
Reflection Vision
\ Controller
Force Force/Torque Sensor
Controller |

NASA Langley Research Center Telerobotic Controller Architecture
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In the top, forward control path above we see that resolved-rate (inverse velocity) is the basic
control method, as opposed to inverse pose control. Being a linear problem, the resolved-rate method has
several attractive benefits over IPK control including the ability to add velocity control inputs as vectors,
which is not possible with IPK (due to orientation).

The total Cartesian velocity vector (translational and rotational) input determining the robot
motion is the sum of four inputs, from the hand controller, position controller, vision controller, and
force/torque controller. The displacement of the hand controller is interpreted as a velocity input, for both
the translational and rotational modes. Often the joystick will have a hardware or software spring return-
to-center, including deadbands, to more easily turn off velocities after certain directions are finished for
the time being. The position, vision, and force controllers (details hidden) yield a Cartesian velocity that
will move the robot in the direction that the control algorithm determines in each case.

Not all control modes need be enabled at all times, but all can be combined is desired. This could
lead to controller contention. If the joystick enables force reflection, this provides an extra sensory
feedback back to the human operator which has been proven very effective in many experiments in
different research labs. Today we call this force-reflection aspect of telerobotics haptics.
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12.5 Naturally-Transitioning Rate-to-Force Controller Architecture

Resolved-rate control automatically (naturally) changes to force control when the robot end-
effector enters into contact with the environment. A force/torque (F/T) sensor and force/moment
accommodation (FMA) algorithm is required to accomplish this. After contact, the constant velocity
command becomes a constant force command. In addition, if there is a human teleoperator with haptic
interface, the force/moment that the human applies to the interface becomes proportional to the
force/moment that the robot exerts on the environment at contact. This works and feels great in real-world
applications, providing telepresence.

Xe + Xy O O, X,
Resolved :
Master B I == Manipulator|— =
Rate
. F/T
Tm X = Sensor

37 Fu

(FMA)

(Force Reflection - Optional)

This control architecture was implemented by Dr. Bob and teams at NASA Langley Research
Center and Wright-Patterson AFB®.

¢ R.L. Williams II, .M. Henry, M.A. Murphy, and D.W. Repperger, 1999, Naturally-Transitioning Rate-to-Force Control in Free and
Constrained Motion, ASME Journal of Dynamic Systems, Measurement, and Control, Trans. ASME, 121(3): 425-432.
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12.6 Single Joint Control

Every controller architecture we’ve considered requires linearized independent (but simultaneous)
single joint angle control, presented in this section.

Manipulator dynamics is extremely complicated considering the number of terms. We can easily
use symbolic MATLAB to crank out the terms but they go on for pages and their structure is difficult to
understand. In this case, numerical Newton-Euler recursion a’la Craig (2005, Chapter 6) is useful to get
around the need for analytical expressions.

How is manipulator dynamics done in industry for control purposes? In almost all cases it is
ignored. How is this possible? (Large gear ratios tend to decouple the dynamic coupling in motion of one
link on its neighbors — we will see this in modeling soon.) The vast majority of multi-axis industrial robots
are controlled via linearized, independent single joint control. So, robot control in industry is generally
accomplished by using N independent (but simultaneous) linearized joint controllers, where N is the
number of joint space freedoms of the robot.

We now will briefly discuss single joint control. We will focus on a common system, the armature-
controlled DC servomotor driving a single robot joint / gear train / link combination, shown below. This

requires dynamics, but it is not coupled nor nonlinear.

Open-Loop System Diagram

L
J’_
J’_
VoAt :
L Amplifier 1,(t)
? DC Motor ? Gearing ?Rotaiing Link T
V(t) | armature voltage m(t) | generated motor torque | 7(t) | load torque
L armature inductance | Gu(t) | motor shaft angle 6L(t) | load shaft angle
R armature resistance wm(t) | motor shaft velocity wL(t) | load shaft velocity
ia(t) | armature current JIm lumped motor inertia Ju(t) | total load inertia
ve(t) | back emf voltage Cm motor viscous damping | CL load viscous damping
n gear ratio
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Closed-Loop Feedback High-level Control Diagram

High-level Computer Control Diagram

Simplifying Assumptions
¢ rigid motor, load shafts
e nN>>1 (the large gear ratio n reduces speed and increases torque)

Real-world vs. model characteristics

Real World Our Model (simplified)
nonlinear linearized
multiple-input, multiple output (MIMO) single-input, single output (SISO)
coupled decoupled
time-varying load inertia treat as a disturbance; the large gear ratio

diminishes this problem
hysteresis, backlash, stiction, Coulomb friction | ignore

discrete and continuous continuous for control design
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Single Joint/Link System Modeling

We must derive all linear ordinary differential equations (ODEs) describing the dynamics of an
armature-controlled DC servomotor driving a single robot joint / link. This is an electromechanical
system, including a gear train. We must perform modeling, simulation, and control. The system diagram
was shown earlier in this section.

Armature Circuit Diagram

Electrical Model Kirchoff’s voltage law

(1)

Electromechanical coupling
e The generated motor torque is proportional to the armature current

2)

e The back-emf voltage is proportional to the motor shaft angular velocity
3)

(K7 = Ks can be shown)
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Mechanical Model
Euler’s Equation (the rotational form of Newton’s Second Law):

Free-body diagrams

Load

4)
Motor

)
where 7 ;(t) is the load torque reflected to the motor shaft.
Gear ratio n

(6)

Substituting (6) into (5) yields (7)

(7)



Reflect load inertia and damping to motor shaft

Substitute

into (4)

Substitute (8) into (7) to eliminate 7o

Combine terms

define
J Y
Je=Jy +n—; effective inertia, total reflected to motor shaft
C
Ce=Cy +_2L
n

effective damping, total reflected to motor shaft

105

(8)

©)

(10)
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Final Mechanical Model (ODE)

(11)

This is a second-order ODE in 6u. Can also be written as first-order ODE in awm.

(12)

1
For common industrial robots, n >> 1 so — is small; therefore we can choose a nominal J. and
n

assume it 1s constant without much error in control.

For example, the NASA 8-axis ARMII robot downstairs has n = 200 with harmonic gearing. This
is why we can ignore the time-varying robot load inertia and design decoupled independent linear joint
controllers. The gear-reduced load inertia variation is then treated as a disturbance to the single joint
controller.

An alternative is to reflect the motor inertia and damping to the load shaft as shown below, but
we will use the first case above.

(J_+n*),)f, +(C_+n’C,)b, =1,
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Open-Loop Block Diagram

Use Laplace transforms on different ODE pieces of the system model and then connect the
components together in blocks connected by arrows representing variables. A transfer function goes
inside each block representing component dynamics. This block diagram is shown below, in
MATLAB/Simulink implementation, including a disturbance torque.

1
=410

1
Omegahd >||<- Omegal -

ifn

RLCircuil Jc Maolar Dyamics

wh : }< Omegahd

Closed-Loop Feedback Control Diagram

Assuming perfect encoder sensor for angular position feedback, we include block for the single-
joint PID controller. The MATLAB/Simulink implementation is shown below.

Omegal
II ThetaE o et .’E} _ » L | ]
Rdarance Som
Thaal FID Camralier Inkag ehar Thetal

Ekaramacranizl Sysem

Theta$ ;i |< Thetat,

Encader
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PID Controller Design

PID Controller characteristics

PID stands for:

Controller transfer function:

Each term does this:

Use PID w/ approximate derivate in Simulink — numerical differentiation can lead to errors and numerical
instability and thus it is to be avoided if possible.

Trial and Error PID Design

Start with the P gain value — start low and increase P to get the desired time nature of response.
Then add the D gain value term for stability. Add the I gain value to reduce steady-state error. Always
use Simulink to simulate control and dynamics response of the single joint/link system for different PID
choices; compare various cases and select a suitable controller in simulation.

A better approach is to perform analytical design for PID controllers using classical control theory,
such as in ME 3012.

Controller Performance Criteria
Stability

Rise Time

Peak Time

Percent Overshoot

Settling Time

Steady-state error

These performance criteria provide a rational basis for choosing a suitable controller, at least in theory
and simulation. The real world always provides some additional challenges (noise, modeling errors,
nonlinearities, calibration, backlash, etc.).
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Include Gravity as a Disturbance Torque

Unmodeled, unexpected disturbances are modeled as disturbances in control systems. It is
convenient to do so at the motor torque level in the block diagram.

Gravity is known and expected. However, in single joint control we can include the effect of gravity as a
disturbance. First let us model the gravity effect for a single joint. Lump all outboard links, joints, and
motors as a single rigid body.

e test with original PID gains
e redesign new PID gains with gravity disturbance considered



