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4.  Forward Pose Kinematics (FPK) 
 
4.3  FPK Examples 
 
4.3.4  Spatial PRP Cylindrical Serial Robot FPK Solution 
 
Forward Pose Kinematics Symbolic Derivations 
 Given the cylindrical robot (the 9 constant DH Parameters) and 1 2 3, ,L L , Calculate 0

3T   . 

Note 0
3T    is represented by    0

3 3 3 3

T
X x y z  . 

 

 
 

i 1i   1ia  id  i  

1 0 0 L1 0  0
1T   

2 0 0 0 2  1
2T   

3 90   0 L3 0  2
3T   

  

Y0

Z 0

1X

Z Z1 2

L 3

X 2

Z 3

1L

X 3

21Z Z

Top

Front

X0

X1

2

2
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Substitute each row of the DH parameters table into the equation for 1i
iT

   . 

 

1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

c s a

s c c c s d s
T

s s c s c d c

 
     
     



   

   

 
        
 
 

 

 

0
1 1

1

1 0 0 0

0 1 0 0
( )

0 0 1

0 0 0 1

T L
L

 
 
      
 
 

 

2 2

2 21
2 2

0 0

0 0
( )

0 0 1 0

0 0 0 1

c s

s c
T

 
 



 
 
      
 
 

  32
3 3

1 0 0 0

0 0 1
( )

0 1 0 0

0 0 0 1

L
T L

 
 
      
 
 

 

 

2 2 3 2

2 2 3 20 0 1 2
3 1 1 2 2 3 3

1

0

0
( ) ( ) ( )

0 1 0

0 0 0 1

c s L s

s c L c
T T L T T L

L

  
  



  
 
                  
 
   

   

 

0
3 3 3 3

3 2 3 2 1 2

T

T

X x y z

L s L c L



  



 
 

 (interpret geometrically) 
 

In this robot the point of interest is the origin of {3} so no hand frame {H} is required.  Also, the kinematic 
base frame {0} is already on the floor, so there is no need for another base frame {B}. 
 
Spatial Cylindrical Robot FPK Examples 
 

 1)  Given 1 2 33, 30 , 2L L   , calculate 0
3T   . 

0
3

0.866 0 0.5 1

0.5 0 0.866 1.732

0 1 0 3

0 0 0 1

T

  
 
      
 
    

or  
   

 

0
3 3 3 3

1 1.732 3 30

T

T

X x y z 

  
 

 

 2)  Given 1 2 32, 90 , 1L L    , calculate 0
3T   . 

0
3

0 0 1 1

1 0 0 0

0 1 0 2

0 0 0 1

T

 
       
 
    

or   
   

 

0
3 3 3 3

1 0 2 90

T

T

X x y z 

  
 

 
Check both results with sketches (top and front views).  Be sure to include the {3} and {0} XYZ axes to 

check the orientation 0
3 R    in addition to the position vector  0

3P . 
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4.3.5  Spatial 6R PUMA Serial Robot FPK Solution 
 
Spatial 6R PUMA Robot   Forward Pose Kinematics Symbolic Derivations 
 

Given the robot (the 18 constant DH Parameters) and 1 2 3 4 5 6( , , , , , )      , Calculate 0
6T    and B

HT   . 
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Step 1.  Derive all n neighboring 1i
iT

    matrices by substituting each row of the DH parameters table 

into the formula we derived for 1i
iT

    on the previous page.  Row i yields the homogeneous 

transformation matrix 1i
iT

   .  Do this for all n active dof, i.e. all n rows of the DH parameters table. 

 
Example:  Spatial 6-dof 6R PUMA Robot DH Parameters Table (figure given earlier) 
 

i 1i   1ia  id  i    

1 0 0 0 1  0
1T   

2 90   0 L0 2 90      
1
2T  

3 0 L1 0 3 90      
2
3T  

4 90  0 L2 4  3
4T   

5 90   0 0 5  4
5T   

6 90  0 0 6 90      
5
6T  

 

Substitute each row of the DH parameters table into the equation below for 1i
iT

   .  Evaluate the angle 

offsets also, i.e. use the trigonometric sum-of-angle formulas (given on the next page). 

1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

c s a

s c c c s d s
T

s s c s c d c

 
     
     



   

   

 
        
 
 

  
cos( )

sin( )

a b cacb sasb

a b sacb casb

 
  


 

 

1 1

1 10
1

0 0

0 0

0 0 1 0

0 0 0 1

c s

s c
T

 
 
      
 
 

  

2 2

01
2

2 2

0 0

0 0 1

0 0

0 0 0 1

s c

L
T

c s

 
 
      
 
 

  

3 3 1

3 32
3

0

0 0

0 0 1 0

0 0 0 1

s c L

c s
T

  
       
 
 

 

 

4 4

23
4

4 4

0 0

0 0 1

0 0

0 0 0 1

c s

L
T

s c

 
        
 
 

  

5 5

4
5

5 5

0 0

0 0 1 0

0 0

0 0 0 1

c s

T
s c

 
 
       
 
 

  

6 6

5
6

6 6

0 0

0 0 1 0

0 0

0 0 0 1

s c

T
c s

  
       
 
 

 

 
Step 2.  Use matrix multiplication with consecutive homogeneous transformation matrices in the correct 
order  to yield the forward pose kinematics solution. 

 0
6T    gives the pose (position and orientation) of the last active joint/link Cartesian coordinate 

frame {6} with respect to the kinematic base Cartesian coordinate frame {0}.  It is a function of all n = 6 
joint variables. 
  



8 
 
PUMA FPK Solution 

 
0 0 1 2 3 4 5
6 1 1 2 2 3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( )T T T T T T T                                 

 

There are 2 different representations for the FPK solution:   0 0
6 6T X    , where 

   0
6

T
X x y z    , and we use Z-Y-X () Euler angles convention. 

 
 This FPK solution for the spatial 6-dof 6R PUMA robot can be simplified by deriving the analytical 
results separately for the arm joints 1 2 3( , , )   , primarily responsible for positioning in 3D, and the wrist 

joints 4 5 6( , , )   , primarily responsible for orienting in 3D. 

 
0 0 3
6 3 1 2 3 6 4 5 6( , , ) ( , , )T T T                 

 
PUMA Arm Angles FPK Solution 
 

Take advantage of parallel Z axes in the consecutive arm frames {2} and {3} – use trigonometric 
sum-of-angles formulas (given above). 

 
0 0 1
3 1 2 3 1 1 3 2 3

1 1 23 23 1 2

1 1 00
3 1 2 3

23 23 1 2

1 23 1 23 1 0 1 1 1 2

1 23 1 23 1 00
3 1 2 3

( , , ) ( ) ( , )

0 0 0

0 0 0 0 1
( , , )

0 0 1 0 0

0 0 0 1 0 0 0 1

( , , )

T T T

c s c s L s

s c L
T

s c L c

c c c s s L s L c s

s c s s c L c
T

     

  

  

          

    
   
           
   
   

   


   
1 1 1 2

23 23 1 20

0 0 0 1

L s s

s c L c

 
  
  
 
 

 

 

where the following abbreviations were used: 
23 2 3

23 2 3

cos( )

sin( )

c

s

 
 

 

 
 

 
PUMA Wrist Angles FPK Solution 
 

There are no consecutive parallel Z axes in the consecutive wrist frames {4}, {5}, and {6}.  
Therefore, no sum-of-angles formula simplification is possible. 
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3 3 4 5
6 4 5 6 4 4 5 5 6 6

4 6 4 5 6 4 6 4 5 6 4 5

5 6 5 6 5 23
6 4 5 6

4 6 4 5 6 4 6 4 5 6 4 5

( , , ) ( ) ( ) ( )

0

( , , )
0

0 0 0 1

T T T T

s c c c s s s c c c c s

s s s c c L
T

c c s c s c s s c c s s

     

  

              

   
            
 
 

 

 

It is left to the reader to perform the symbolic multiplication 0 0 3
6 3 6T T T           ; the result is very 

complicated and can be found by using symbolic math on the computer (e.g. the MATLAB Symbolic 
Toolbox).  Alternatively, these two matrices can be evaluated and multiplied numerically, using 

0 0 3
6 3 6T T T           . 

 
 Here we will present one aspect of this multiplication.  Due to the spherical wrist (wrist frames 

{4}, {5}, and {6} share a common origin), the position vector  0
6P  is a function only of the first three 

joint angles. 

     
0 1 1 1 2 2 1 23

0 0 0 3
6 1 2 3 4 3 4 0 1 1 1 2 2 1 23

1 2 2 23

( , , )

L s L c s L c s

P P T P L c L s s L s s

L c L c

  
   
        
  

 

 

Where constant vector    3
4 20 0

T
P L  .  In this way the PUMA FPK symbolic expressions are 

partially decoupled.  The position vector  0
6P  is only a function of 1 2 3( , , )   , but the rotation matrix 

0
6 R    is a complicated function of all six joint angles.  This fact is used to simplify the Inverse Pose 

Kinematics solution. 
 
Additional, fixed transforms 
 The above 0

6T    result is for the active joints only – often we need to expand this result to include 

additional transformations that are constant.  For example, the kinematic base frame {0} may be located 
at the shoulder of the robot, while another base frame {B} may be  mounted on the floor.  Also, the 
Forward Pose Kinematics expressions will be simplest if {6} is located at the last active wrist joint; if a 
tool, gripper, or other end-effector is attached we need another frame of interest (say {H} for hand) 
attached; {H} is rigidly connected to {6} (i.e. no more joints in between) but offset by some distance. 
 The overall Forward Pose Kinematics Homogeneous Transformation Matrix is given in generic 
form below.  Note that the fixed matrices 0

BT    and 6
HT    are not determined by DH parameters since 

there is no active joint involved in those two transformations.  Instead, we simply determine these matrices 
by inspection.  Make the orientation identical if possible. 
 

0 6
0 6 1 2 3 4 5 6( ) ( , , , , , ) ( )B B

H B H HT T L T T L                     
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0

1 0 0 0

0 1 0 0
( )

0 0 1

0 0 0 1

B
B

B

T L
L

 
 
      
 
 

  6

1 0 0 0

0 1 0 0
( )

0 0 1

0 0 0 1

H H
H

T L
L

 
 
      
 
 

 

 
Sum of Angles Simplification 

 The first use of the sum-of-angles formulas below is in simplification of 1i
iT

    when there are 

angle offsets for one or more of the i (i = 2,3,6 in the PUMA robot). 
 If any two (or more) consecutive Z axes are parallel (i.e. consecutive i rotate about parallel Z 
axes), we can simplify the resulting symbolic Forward Pose Kinematics expressions by using sum of angle 
formulas. 

cos( )

sin( )

a b cacb sasb

a b sacb casb

 
  


 

 
Many common industrial robots have this parallel axes characteristic for at least one pair.  First multiply 
together any two individual Homogeneous Transformation Matrices that represent consecutive parallel 
axes (shown for joints 2 and 3 of the PUMA above).  Take care to keep the proper matrix multiplication 
order; i.e. use the associative property of matrix multiplication, DO NOT commute the order of matrices.  
Then use the above trigonometric formulas to simplify all possible terms to sums of angles before 
completing the other matrix multiplications. 
 
PUMA Robot FPK Examples 
 
Given fixed robot lengths 0 1 21.0, 0.3, 1.5, 1.2, 0.5B HL L L L L      (m). 

 

 1)  Given   (10 ,20 ,30 ,40 ,50 ,60 )        , calculate 0
6T    and B

HT   . 

 

0
6

0.023 0.637 0.771 1.358

0.030 0.771 0.636 0.544

0.999 0.008 0.036 2.181

0 0 0 1

T

 
       
 
 

     

0.023 0.637 0.771 1.744

0.030 0.771 0.636 0.862

0.999 0.008 0.036 3.163

0 0 0 1

B
HT

 
       
 
 

 

 
 

 2)  Given   ( 60 , 50 , 40 , 30 , 20 , 10 )             , calculate 0
6T    and B

HT   . 

 

0
6

0.638 0.699 0.322 0.915

0.437 0.015 0.899 2.184

0.634 0.715 0.296 0.964

0 0 0 1

T

  
 
       
 
 

   

0.638 0.699 0.322 1.076

0.437 0.015 0.899 2.634

0.634 0.715 0.296 1.816

0 0 0 1

B
HT

  
 
       
 
 

 

  



11 
 

5.  Inverse Pose Kinematics (IPK) 
 
5.2  Planar 3R Robot IPK Solution 
 
Tangent half-angle substitution derivation 
 
 In this subsection we first derive the tangent half-angle substitution using an 
analytical/trigonometric method.  Defining parameter t to be: 
 

tan
2

t
   
 

 

 
i.e. the tangent of half of the unknown angle , we need to derive cos and sin as functions of parameter 
t.  This derivation requires the trigonometric sum of angles formulae. 
 

cos( ) cos cos sin sin

sin( ) sin cos cos sin

a b a b a b

a b a b a b

 
  


 

 
 To derive the cos term as a function of t, we start with: 
 

cos cos
2 2

     
 

 

 
The cosine sum of angles formula yields: 
 

2 2cos cos sin
2 2

         
   

 

 

Multiplying by a ‘1’, i.e. 2cos
2

 
 
 

 over itself yields: 

 

2 2

2 2 2

2

cos sin
2 2

cos cos 1 tan cos
2 2 2cos

2

 
  



                                
 
 

 

 

The cosine squared term can be divided by another ‘1’, i.e. 2 2cos sin 1
2 2

        
   

. 

 

2

2

2 2

cos
2

cos 1 tan
2

cos sin
2 2




 

  
                            
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Dividing top and bottom by 2cos
2

 
 
 

 yields: 

 

2

2

1
cos 1 tan

2 1 tan
2




 
                     

 

 
Remembering the earlier definition for t, this result is the first derivation we need, i.e.: 
 

2

2

1
cos

1

t

t
 



 

 
 
 
 To derive the sin term as a function of t, we start with: 
 

sin sin
2 2

     
 

 

 
The sine sum of angles formula yields: 
 

sin sin cos cos sin 2 sin cos
2 2 2 2 2 2

                              
           

 

 
Multiplying top and bottom by cosine yields: 
 

2 2

sin
2

sin 2 cos 2 tan cos
2 2 2

cos
2


  



 
                     
 
 

 

 
From the first derivation we learned: 
 

2

2

1
cos

2 1 tan
2




         
 
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Substituting this term yields: 
 

2

1
sin 2 tan

2 1 tan
2




 
                

 

 
Remembering the earlier definition for t, this result is the second derivation we need, i.e.: 
 

2

2
sin

1

t

t
 


 

 
 
 The tangent half-angle substitution can also be derived using a graphical method as in the figure 
below. 
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Alternate Planar 3R IPK solution method 
 
 The equation form 
 

cos sin 0E F G     
 

arises often in the position solutions for mechanisms and robots.  It appeared in the 1 solution of the 
Inverse Pose Kinematics solution for the planar 3R robot in the EE/ME 4290/5290 NotesBook and was 
solved using the tangent half-angle substitution. 
 
 Next we present an alternative and simpler solution to this equation.  We make two simple 
trigonometric substitutions based on the figure below. 
 

 
 
Clearly from this figure we have: 
 

2 2
cos

E

E F
 


   2 2

sin
F

E F
 


 

 
 

 In the original equation we divide by 2 2E F  and rearrange: 
 

2 2 2 2 2 2
cos sin

E F G

E F E F E F
  
 

  
 

 
The two simple trigonometric substitutions yield: 
 

2 2
cos cos sin sin

G

E F
    

 


 

 
Applying the sum-of-angles formula cos( ) cos cos sin sina b a b a b    yields: 
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2 2
cos( )

G

E F
  
 


 

 
And so the solution for  is: 
 

1
1,2 2 2

cos
G

E F
    

   
 

 

 
 where 

1tan
F

E
      

 

 
and the quadrant-specific inverse tangent function atan2 must be used in the above expression for . 
 
 There are two solutions for , indicated by the subscripts 1,2, since the inverse cosine function is 
double-valued.  Both solutions are correct.  We expected these two solutions from the tangent-half-angle 
substitution approach.  They correspond to the elbow-up and elbow-down solutions (the engineer must 
determine which is which) for the planar 3R robot IPK solution. 
 
 For real solutions for  to exist, we must have 
 

2 2
1 1

G

E F


  


  or  

2 2
1 1

G

E F
  


 

 
If this condition is violated for the planar 3R robot, this means that the given input pose x3, y3, is beyond 
the robot workspace limits. 
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Second alternate solution method 
 
 For the planar 3R robot IPK problem we now present a second alternate solution method that does 
not initially result in the equation form cos sin 0E F G    .  We still square and add the XY position 
equations, but without isolating the 2 terms first.  Here are the original XY equations: 
 

3 1 1 2 1 2

3 1 1 2 1 2

cos cos( )

sin sin( )

x L L

y L L

  
  

  
  

 

 
Squaring and adding these equations as-is yields: 
 

2 2 2 2 2
3 1 1 1 2 1 1 2 2 1 2

2 2 2 2 2
3 1 1 1 2 1 1 2 2 1 2

cos 2 cos cos( ) cos ( )

sin 2 sin sin( ) sin ( )

x L L L L

y L L L L

     

     

    

    
 

 
 

 2 2 2 2
3 3 1 2 1 2 1 1 2 1 1 22 cos cos( ) sin sin( )x y L L L L              

 
 
Applying the sum-of-angles formula cos( ) cos cos sin sina b a b a b    yields: 
 

2 2 2 2
3 3 1 2 1 2 1 1 2

2 2
1 2 1 2 2

2 2
1 2 1 2 2

2 cos( ( ))

2 cos( )

2 cos

x y L L L L

L L L L

L L L L

  





     

   

  

 

 
Where we have also used the trigonometric identity cos( ) cosa a  . 
 
 We must deal with trigonometric uncertainty (double-valued inverse trigonometric functions) by 
using cos and sin together, rather than just cos.  The above equation yields: 
 

2 2 2 2
3 3 1 2

2
1 2

cos
2

x y L L

L L
   

  

 
 From the trigonometric identity 2 2

2 2cos sin 1    we obtain: 

 
2

2 2sin 1 cos     

 
 The solution for 2 is then: 
 

2 2 2atan2( sin ,cos )     

 
 The expected two solution sets (elbow-up and elbow-down) come from the on the   square root 
in the 2sin  term. 
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 Knowing 2 in this second alternative IPK solution method, we must return to the original XY 
equations and solve for 1. 
 

3 1 1 2 1 2 1 1 2 1 2 1 2

3 1 1 2 1 2 1 1 2 1 2 1 2

cos cos( ) cos (cos cos sin sin )

sin sin( ) sin (sin cos cos sin )

x L L L L

y L L L L

       
       

     
     

 

 

3 1 2 2 1 2 2 1

3 1 2 2 1 2 2 1

( cos )cos ( sin )sin

( cos )sin ( sin )cos

x L L L

y L L L

   
   

  

  
 

 
 

3 1 1 2 1

3 1 1 2 1

cos sin

sin cos

x k k

y k k

 
 

 

    
where   

1 1 2 2

2 2 2

cos

sin

k L L

k L




 


 

 
 Now, with 2 known, these two XY equations are not independent.  Notice both have the form  

1 1cos sin 0E F G    .  We know two methods to solve this type of equation (tangent half-angle 

substitution, plus the cos  and sin  simple trigonometric substitution).  Either equation can be solved 

for 1 and will yield identical results, one unique 1 for each 2 branch (elbow-up and elbow-down). 
 
 However,  if we continue to use both equations, an interesting geometric interpretation will appear.  
Let us make the following polar substitution, very similar to the previous cos  and sin  simple 
trigonometric substitution (see the figure below). 

 
 
 

1

2

cos

sin

k r

k r





   

where   

2 2
1 2

1 2

1

tan

r k k

k

k
 

  

 
  

 

 

 
We only use the positive square root term in r and the quadrant-specific inverse tangent function atan2 
must be used in the above expression for . 
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 Applying this substitution to the XY equations yields: 
 

3 1 1 1

3 1 1 1

cos cos sin sin cos( )

sin cos cos sin sin( )

x r r r

y r r r

     
     

   

   
 

 
We can form a ratio of the Y to the X equation to solve for 1, one for each 2 value. 
 

31

1 3

sin( )

cos( )

yr

r x

 
 





 

 

1 3 3atan2( , )y x    

 
 The interesting geometric interpretation in the planar 3R IPK solution via this method is shown in 
the figure below.  The entire k1–k2–r triangle shown above is rotated with 1 (and leads 1 for the elbow-
down solution).  r is the distance from the origin of fixed frame {0} to the origin of moving frame {3}. 

 
 
 This is why 1 was able to cancel out of the equations and leave only 2 for solving first in this 
solution method.  The length r from the origin of {0} to the origin of {3} is only a function of the elbow 
joint angle 2 and does not depend on 1 or 3. 
  

X

Y

0

0

L 2

L 1

 1

2

x

y
3

3

k 1

k 2

r 



19 
 

5.3  Spatial PRP Cylindrical Robot IPK Solution 

 
 
Inverse Pose Kinematics Problem 

Given the robot (the 9 constant DH Parameters) and 0
3T   , or    0

3 3 3 3X x y z  , 

Calculate the required joint values 1 2 3, ,L L .  The inverse pose equations come from the forward pose 

expressions: 

11 13 3 2 2 3 2

21 23 3 2 2 3 20
3

3 1

0 0 0

0 0 0

0 1 0 0 1 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

x

y

z

r r p c s x c s L s

r r p s c y s c L c
T

p z L

    
    

       
     
                  
     
     

 

 
This robot has spatial translational motion, but its rotation is limited to the top-view plane.  There is  a 

subspace of the general 6-dof pose, represented by 0
3T    or by    0

3 3 3 3

T
X x y z  . 

 
We have a problem – there are only 3 joints (n = 3) but there are m = 4 Cartesian values.  This is an 
overconstrained problem and no solution exists in general.  A dependency exists among 

   0
3 3 3 3

T
X x y z   and thus all four cannot be commanded independently.  Therefore, let us 

command only 3 Cartesian values      0 0
3RED 3 3 3 3

T
X P x y z  ; we will treat this robot as a 

translational freedom robot.   is not independent but is related to x3 and y3.  The three equations to solve 
for the three unknowns are then taken only from the translational equations. 
  

Z 0

Z Z1 2

L 3

X 2

Z 3

1L

X 3

21Z Z

Top

Front


y

x

z

3

3

3

1X



Y0
X0

X1

2
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Reduced (translation only) Cylindrical Robot Inverse Pose Kinematics Solution, m = n = 3: 

3 3 2

3 3 2

3 1

x L s

y L c

z L




 

   



  

1 3

2 3 3

2 2
3 3 3

atan2( , )

L z

x y

L x y



 

  

 

 
Mathematically, there are two solution sets.  However, the –L3 solution is not a practical choice, so we 
only show one solution set above.  If –L3 is allowed, then 2 180    is the angle solution.   This is not a 

general spatial manipulator, i.e.  0
3P  and 0

3 R    cannot be specified independently. 

 
Cylindrical Robot Inverse Pose Kinematics Examples 
 

 1)  Given  0
3P , calculate 1 2 3, ,L L . 

 
3

0
3 3

3

1

1.732

3

x

P y

z

   
       
   
   

 

 
Answers (m and deg) 

i branch L1 2 L3 
1 practical 3 30 2
2 impractical 3 210 –2

 
The first line is expected since this is the same position as the spatial PRP cylindrical robot Forward Pose 
Kinematics Example 1.  Now we must check the second solution set to ensure it is correct (substitute the 
second, impractical, solution set into Forward Pose Kinematics and ensure the same  0

3P  is obtained).  

Also, for both cases you can calculate 0
3 R    – they will be different (why?). 

 

 2)  Given  0
3P , calculate 1 2 3, ,L L . 

 
3

0
3 3

3

1

0

2

x

P y

z

   
       
   
   

 

 
Answers (m and deg) 

i branch L1 2 L3 
1 practical 2 –90 1
2 impractical 2 90 –1

 
As mentioned earlier there is only one practical solution set (1) for the cylindrical robot.  Solution set (2), 
with the negative L3, is given in the above examples only for completeness. 
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5.4  Pieper’s Solution Method 
 
Decoupled Inverse Pose Kinematics Solution 
 

Pieper proved that if a 6-dof robot has any three consecutive joint axes intersecting, there exists a 
closed-form (analytical) solution to the inverse position kinematics.  The majority of industrial robots are 
in this category. 
 

In particular, many robots have a spherical wrist, i.e. three wrist actuators that rotate about a axes 
intersecting in a common point.  In this case, the position and orientation sub-problems may be decoupled.  
We solve for the first three joints first using the position vector input.  Then we solve for the second three 
joints next using the given orientation, based on the orientation caused by the first three joints.  The given 
position vector must point to the wrist point (the shared origin point of three consecutive wrist frames).  
We can always transform any end-effector or other tool vector to this origin point, since there are no more 
active joints beyond the last wrist joint. 
 
PUMA Example (without details): 
 

 Given 0
6T   , calculate 1 2 3 4 5 6( , , , , , )      . 

 
0
6 1 2 3 4 5 6( , , , , , )T f           

 

 0 0
6 1 2 3 4 5 6 6 1 2 30

6

( , , , , , ) ( , , )

0 0 0 1

R P
T

        

 
 

        
 
  

 

 
 

 Joints 4, 5, and 6 cannot affect the translation of the wrist origin point. 
 

1)  Translational equations:  Given  0
6P , calculate 1 2 3( , , )    values (4 sets). 

   3 independent equations, 3 unknowns. 
 

2)  Rotational equations:  Given 0
6 R   , and knowing 1 2 3( , , )   , calculate 4 5 6( , , )    values (2 sets). 

   3 independent equations, 6 dependent equations, 3 unknowns. 
 

3 0 0
6 4 5 6 3 1 2 3 6( , , ) ( , , )

T
R R R                 

 
 4 sets of 1 2 3( , , )   ; 2 sets of 4 5 6( , , )    for each.  Therefore, there are 8 overall solutions to the 

inverse position problem for the PUMA.  Some solution sets may lie outside joint ranges.  Generally one 
would choose the closest solution to the previous position. 
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We can use homogeneous transformation equations to isolate and solve for the various unknowns 
in turn.  I call this ‘peeling-off’ homogeneous transformations matrices with unknowns to separate 
variables.  The approach is to multiply by the inverse component homogeneous transformation matrices 
as a function of one unknown joint variable each.  Below the details are not shown so you must try this 
for yourself.  The original FPK transform equation is the starting point for IPK, as always. 
 

0 0 1 2 3 4 5
6 1 1 2 2 3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( )T T T T T T T                                 

 
The left-hand-side 0

6T    is a set of valid given numbers, the input to the IPK problem.  Inverting 

the first matrix on the left yields: 
 
 

10 0 1 2 3 4 5
1 1 6 2 2 3 3 4 4 5 5 6 6( ) ( ) ( ) ( ) ( ) ( )T T T T T T T     


                            

 
from which we can solve for 1 and 3.  Now we invert the homogeneous transformation matrix that 
combines the first three matrices in the original equation. 

 
 

10 0 3 4 5
3 2 6 4 4 5 5 6 6( ) ( ) ( ) ( )T T T T T   


                    

 
We can solve for 2 with 1 and 3 already known.  This completes the solution for the arm angle joints 

1 2 3( , , )   , possible because the position vector  0
6P  is only a function of 1 2 3( , , )   , as stated earlier. 

 
 Now we must solve for the wrist joint angles 4 5 6( , , )    knowing 1 2 3( , , )   .  Performing one more 

matrix inversion on the left will separate these unknowns sufficiently. 
 

10 0 4 5
4 4 6 5 5 6 6( ) ( ) ( )T T T T  


                

 
No we can isolate and solve for 4, 5, and 6 in turn. 
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5.5  Spatial 8R NASA AAI ARMII Robot IPK Solution 
 

   
 
 
Inverse Pose Kinematics General Statement 
 
 Given:    Calculate: 
 
 

Since m = 6 (Cartesian dof) and n = 8 (joint dof) we have the underconstrained kinematically-
redundant case.  There are infinite solutions (multiple as well).  There are some great ways to make use 
of this redundancy for performance optimization in addition to following commanded Cartesian 
translational and rotational velocity trajectories.  For inverse pose purposes we will here simplify instead 
and lock out the redundancy so that m = n = 6; let us choose 3 5 0    for all motion to accomplish this.  

Then we have a determined Inverse Pose Kinematics problem with finite solutions, still with multiple joint 
angle solution sets. 
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 The Forward Pose Kinematics relationship is: 
 

 
 

So, the first step should be to simplify the equations as much as possible by calculating the required 0
8T    

to achieve the commanded B
HT   . 

 
 
 

The problem can be decoupled between the arm joints 1-4 and the wrist joints 5-8 since the ARMII has a 
spherical wrist (all 4 wrist joint Cartesian coordinate frames share the same origin).  See the previous 
section that explained the Pieper results for the 6-axis PUMA robot. 
 
Now, we will further simplify by ignoring the wrist joints 6-8 (5 is already locked to zero) and solve the 
Inverse Pose Kinematics problem only for the arm joints 1,2, and 4.  The full inverse solution is given in 
Williams0F

1. 
 
Inverse Pose Kinematics Symbolic Solution for Arm Joints Only, with 3 0   

 
 Reduced problem statement 

Given    5 5 5 5

TBP x y z , calculate 1 2 4( , , )i   , for all possible solution sets i. 

 
That is, with only three active joints, we can only specify three Cartesian objectives, in this case the XYZ 
location of the origin of {5} with respect to origin of {B} (and expressed in the basis of {B}).  Note that 

   5 8
B BP P  due to the spherical wrist. 

 
 The equations to solve for this problem come from the Forward Pose Kinematics relationships for 
the ARMII robot, the translational portion only (further, with 3 0  ). 

 
 
 
 

This equation yields (the derivation is left to student, use symbolic Forward Pose Kinematics): 

 
5 1 3 2 5 24

5 5 1 3 2 5 24

5 3 2 5 24

( )

( )B

B

x c d s d s

P y s d s d s

z d d c d c

    
         
       

   where  24 2 4

24 2 4

cos( )

sin( )

c

s

 
 

 
 

 

 

(Since 3 0   always, the Z axes of 2 and 4 are always parallel and we used the sum-of-angles trig 

formulas.) 
  

 
1 R.L. Williams II, Kinematic Equations for Control of the Redundant Eight-Degree-of-Freedom Advanced Research Manipulator II, 
NASA Technical Memorandum 4377, NASA Langley Research Center, Hampton, VA, July 1992. 
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Solution Process 

 
1. A ratio of the Y to X equations yields: 

 

1 180    is also a valid solution 

 
2. Since 1 is now known (two values), we can modify the Y and Z equations. 

 

where:  

5

1

5 B

y
Y

s

Z z d




 
 

 
  Isolate the 2 4( )   terms: 

 
 
 
 

  Square and add to eliminate 4: 
 
 
 
 
 
 
 
 
 
 
 

The result is one equation in one unknown 2. 

2 2cos sin 0E F G     

 

where   
3

3

2 2 2 2
3 5

2

2

E Zd

F Yd

G Y Z d d





    

 

 
We can solve this equation for 2 by using the Tangent Half-Angle Substitution.  We presented this back 
in the Inverse Pose Solution of the planar 3R robot; we solve for 2 (in that section, it was for 1). 
 
 Solve for 2 by inverting the original Tangent Half-Angle definition. 
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 Two 2 solutions result from the   in the quadratic formula; both are correct (there are multiple 
solutions – elbow up and elbow down).  To find 4, return to original (arranged) translational equations. 
 

5 24 3 2

5 24 3 2

d s Y d s

d c Z d c

 
 

 

 
 Find the unique 4 for each 2 value (use the quadrant-specific atan2 function in MATLAB). 
 
 
 
Solutions Summary 
 
 The solution is now complete for the ARMII robot reduced inverse pose problem (translational 
joints only, plus 3 0  ). 

 
 There are multiple solutions since there are two values for 1.  For each 1, there are two values 
for 2; for each valid 1 2( , )  , there is a unique 4.  So there are a total of four 1 2 4( , , )    solution sets for 

this reduced problem.  We can show this with the PUMA model (it’s not the same robot, but it has similar 
joints when 3 0  ). 

 
 These four solution sets occur in a very special arrangement pattern, summarized in the table 
below. 
 

i 1 2 3 4 

1 1 12  0 4 

2 1 22  0 –4 

3 1 180    
22  0 4 

4 1 180    
12  0 –4 

 

 In all numerical examples, you can check the results; plug all solution sets 1 2 4( , , )    one at a time 

into the Forward Pose solution and verify that all sets yield the same, commanded  5
B P .  You can also 

calculate the associated 4
B R   .  All of these resulting rotation matrices should be different (why?). 
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8R ARMII Robot Translational Inverse Pose Kinematics Example 
 

 Given  5
B P , calculate 1 2 4( , , ) 1,2,3,4i i    . 

 

 
5

5 5

5

0.6572

0.1159

1.6952

B

x

P y

z

   
        
   
   

 

 

 

Answers (deg) 

 

i 1 2 3 4 

1 10 20 0 30 

2 10 46.6 0 -30 

3 190 -46.6 0 30 

4 190 -20 0 -30 

 

 

Check all solution sets via Forward Pose Kinematics to ensure all yield the correct, commanded  5
B P . 
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7.  Velocity Kinematics 
 
7.8  Velocity Kinematics Example 
 
Spatial 3P Cartesian Manipulator Velocity Example 

 
 
 a)  Forward Velocity Kinematics 

    0 0
X J L    

0

1 3

2 2

3 1

0 0 1

0 1 0

1 0 0

x d d

y d d

z d d

      
             

             

 
 
 

 

 
 
 b)  Inverse Velocity Kinematics (analytical result) 

   10 0L J X


   
    

0 0

1

2

3

0 0 1

0 1 0

1 0 0

d x z

d y y

d z x

       
             
            

  
  
 

 

 
 
 c)  Singularity Analysis 

0 1 2 3 1J J J J      no possible singularities 

 
 
 d)  Static Force Analysis 

   0 0T
f J F      

0 0

1

2

3

0 0 1

0 1 0

1 0 0

x z

y y

z x

f F F

f F F

f F F

       
             
             
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7.9  Jacobian Matrix Expressed in Another Frame 
 
 Here the Jacobian matrix still relates the end-effector frame velocity with respect to the base frame.  
But simpler analytical expressions are possible for the Jacobian matrix, by choosing an intermediate frame 
to express the coordinates of the velocity vectors (different basis of expression). 

 
 

 
 

 
 

0
0

0

0

0

k k

k

Rv v

R 

              
          

 

 

 
   

k

kv
J


          

   
 
   

0

0v
J


          

  

 
 

 
 0 0

0

0

0

k

k

k

R
J J

R

                

      is not dependent on a frame (relative joint rates) 

 
 
0 0

0

0

0

k

k

k

R
J J

R

              
 

 
Planar 3R Robot 
 The Jacobian was derived in frame {0} (here we go to {3} instead of {H}). 
 

1 1 2 12 2 12
0

1 1 2 12 2 12

0

0

1 1 1

L s L s L s

J L c L c L c

   
       
  

 

 
 

 
2 2 2 2

1
1 2 2 2 2

0

0

1 1 1

L s L s

J L L c L c

  
       
  

   
1 1

1
0 1 1

0

0

0 0 1

c s

R s c

 
       
  

 

 

 
1 2

2
1 2 2 2

0 0

0

1 1 1

L s

J L c L L

 
       
  

    
12 12

2
0 12 12

0

0

0 0 1

c s

R s c

 
       
  

 

 

 
1 23 2 3 2 3

3
1 23 2 3 2 3

0

0

1 1 1

L s L s L s

J L c L c L c

 
       
  

   
123 123

3
0 123 123

0

0

0 0 1

c s

R s c

 
       
  

 

 
 

3J    agrees with that derived in the third method above. 
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7.10  Cartesian Transformation of Velocities and Wrenches 
 
 Here we show how to move velocity and wrench vectors (both translational and rotational) from 
one point to another on a rotating rigid body.  We can replace one vector with an equivalent vector acting 
at a different point.  For example, to calculate the velocity (or wrench) at the wrist to produce a desired 
velocity (or wrench) at the hand. 
 
 
Velocity Transformation 
 
 Here we find the equivalent velocity at {A} corresponding to a given desired motion of {B}.  For 
instance, {B} could be the hand frame {H} where we want motion and {A} would then be the last wrist 
frame {n} for which the Jacobian matrix is derived. 

 
Basic equations 

       
   

A
B A A B

B A

v v P

 

  


   reversing   

             
   

A A
A B B B B B B

A B

v v P v P 

 

     


 

 
All vectors must be expressed in same frame, choose {A}. 

 
   

 
 

0 0

0 00

A B
A A A

A BB B B

A
BA B

V VR P R

R 

                      
          

 

 

   A BA
B VX T X   

   

 

 0

A A A
B B BA

B V A
B

R P R
T

R

                    
 

 

Where  

0

0

0

z y
A

B z x

y x

p p

P p p

p p

 
      
  

 is the cross product matrix. 
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Velocity transformation example 
 
 Find the equivalent velocity at A corresponding to a given motion of B. 
 

 Given:   0

1

1

0

B

BV

 
   
 
 

   0

0

0

2

B

B
 
   
 
 

 

 
 

 
2.6

1.5

0

A
BP

 
   
 
 

  

0.866 0.5 0

0.5 0.866 0

0 0 1

A
B R

 
      
  

 

 
 

0 0 1.5 0.866 0.5 0 0 0 1.5

0 0 2.6 0.5 0.866 0 0 0 2.6

1.5 2.6 0 0 0 1 0 3 0

A A
B BP R

     
                     
          

 

 
 

   A BA
B VX T X   

   

 
 

 
 

0

0

0.866 0.5 0 0 0 1.5 1 3.366

0.5 0.866 0 0 0 2.6 1 3.834

0 0 1 0 3 0 0 0

0 0 0 0.866 0.5 0 0 0

0 0 0 0.5 0.866 0 0 0

0 0 0 0 0 1 2 2

A

A

A

V



     
           

                       
    
    

     

 

 
 
 
Check      A B            A BV V r    

 
 

 0

ˆˆ ˆ1 1 0 1

1 0 0 2 1 6 5

0 3 0 0 0 0 0

B

A

i j k

V

       
                   
       
       
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Pseudostatic Wrench Transformation 
 
 Here we find the equivalent wrench at {A} corresponding to a given wrench at {B}.  For instance, 
{B} could be the hand frame {H} where we want the wrench to be exerted and {A} would then be the last 
wrist frame {n} for which the Jacobian matrix is derived. 
 

 
 
 Basic equations 

   
       

A B

A
A B B B

F F

M M P F



  
  more properly,   k

BF  

 
 

  All vectors must be expressed in the same frame, choose {A}. 
 

 
 

   
 

0A BA
BA B

A A A
A BB B B

RF F

M MP R R

              
                  

 

 
 

   A BA
B WW T W     

 
 

 0A
BA

B W A A A
B B B

R
T

P R R

                    
 

 
 

Note  A
B WT     is a block-transpose of  A

B VT   ;  i.e.  A A
B BP R         is switched with [0]. 

 
 There is a duality here.  In the velocity transformation, the rotational term is unchanged, while in 
the wrench transformation, the translational term is unchanged. 
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Wrench transformation example 
 
 Find the equivalent wrench at A corresponding to a given wrench at B. 
 

 Given:   
1

1

0

B

BF

 
   
 
 

   
0

0

0

B

BM

 
   
 
 

 

 

 

 , ,A A A A
B B B BP R P R            are the same as in the velocity example above. 

 
 

   A BA
B WW T W     

 
 

 
 

0.866 0.5 0 0 0 0 1 0.366

0.5 0.866 0 0 0 0 1 1.366

0 0 1 0 0 0 0 0

0 0 1.5 0.866 0.5 0 0 0

0 0 2.6 0.5 0.866 0 0 0

0 3 0 0 0 1 0 3

A

A

A

F

M

     
     
     
                      

    
    

     

 

 
 
 
Check     A BF F         A BM r F   

 
 
 

The derivations and examples for both velocity and wrench transformations were for the inverse 
case, i.e. given the end vector values {B}, calculate the vector values on the same rigid link, but inward 
toward {A}. 
 
 We could easily adapt the derivations and transformations to perform the forward calculation, i.e. 
given the inward vector values {A}, calculate the end vector values on the same rigid link, outward towards 
{B}. 
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8.  Kinematically-Redundant Robots (KRRs) 
 
8.2  Inverse Velocity (Resolved-Rate) Solution 
 
8.2.1  Pseudoinverse-based 
 
 Alternate Particular Solution – satisfies primary task (satisfies Cartesian trajectory) 
 

  Based on Minimum Manipulator Kinetic Energy      1

2

T
f W     

 

   W M    ; The weighting matrix is the manipulator inertia tensor from robot dynamics 

 

     P J X
    

 

    where              11 1T T
J M J J M J

    

 
 This Moore-Penrose pseudoinverse form is subject to singularities.  Singular Value Decomposition 
(SVD) would ameliorate this problem. 
 
 
 
 
 Homogeneous Solution 
 

For optimization, choose  ( )z H   , where  ( )H   is an objective function of joint angles to 

be minimized or maximized.  Use 0Hk   for maximization and 0Hk   for minimization. 

 

  Joint Limit Avoidance     

2

1

( )
n

i ci
J

i i

H
 



 
    

  

 
 

  Singularity Avoidance (Manipulability Maximization)   ( )
T

MH J J   
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8.2.3  Klein and Huang’s Algorithm 
 
 This methods yields the same results as the pseudoinverse with gradient projection into the null-
space, but it is more efficient (less computations).  Klein and Huang’s algorithm accomplishes the 
particular and homogeneous solutions at the same time. 
 

           T
J J w X k J H    ; 

 
 

 solve {w} using Gaussian elimination, then: 
 

        T
J w k H     . 

 
 
So much of the existing kinematically-redundant robot literature is dedicated to more efficient redundancy 
resolution, but I think with today’s processors, this is no longer a problem. 
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8.2.4  Singular Value Decomposition 
 
 Singular Value Decomposition (SVD) yields the same results as the pseudoinverse with gradient 
projection into the null-space, but with singularity robustness.  If [J] is less than full rank, the solution 
cannot track arbitrary Cartesian trajectories, but SVD results are bounded so the motion can drive through 
singularities, as opposed to yielding infinite joint rates at singularities. 
 

     TJ U W V  

 
      [J]  m x n Jacobian matrix 
      [U]  m x n  column orthogonal matrix 
      [W] n x n  positive semi-definite diagonal matrix 
      [V]  n x n  orthogonal matrix 

 

     1 T

j

J V diag U
w

   
       

 

 
 jw  are the singular values of [J].  For underconstrained systems of equations, there will always be 

n – m zero singular values, where n – m is the degree of redundancy.  Any additional zero singular values 

correspond to degeneracies in J.  In the above expression, 
1

jw
 is set to zero for 0jw   (ain’t math fun?!?) 

 
 Both [U] and [V] are column-orthonormal (ignoring the last n – m columns of [U]).  Matrix [V] is 
also row-orthonormal, i.e.: 

        T T

nV V V V I   

 

    T

mU U I ; however,      T

nU U I  (see the SVD example) 

 
 Columns of U corresponding to nonzero jw  are an orthonormal basis which spans the range of [J].  

Columns of V corresponding to zero jw  are an orthonormal basis for the null-space of [J]. 

 
Singular Value Decomposition (SVD) Example 
 

  1.366 0.500 0.500

2.366 1.866 0.866
J

   
  
 

 

 

     

 
3.467 0 0 0.786 0.514 0.344

0.430 0.903 0
0 0.420 0 0.548 0.836 0

0.903 0.430 0
0 0 0 0.288 0.188 0.939

T

T

J U W V

J



    
                   
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     

 *

1

0.786 0.514 0.344 0.288 0 0 0.430 0.903 1.205 0.323

0.548 0.836 0 0 2.381 0 0.903 0.430 1.732 1.000

0.288 0.188 0.939 0 0 0 0 0 0.441 0.118

T

j

J V diag U
w

J

   
       

           
               
                

 

 
 
 

In the above example, the third singular value is zero, so 
1

jw
 is set to zero (n – m singular values will 

always be zero).  This result agrees with  *J  from the Moore-Penrose pseudoinverse formula given 

above. 
 
 
Note: 

    2

T
U U I       3

1 0 0

0 1 0

0 0 0

T
U U I

 
   
  

           3

T T
V V V V I   

 
8.2.5  Generalized Inverses 

 
 A generalized inverse of a matrix gives an answer to the linear problem even when a true matrix 
inverse does not exist (underconstrained, overconstrained, or row-rank-deficient).  Mathematically, [G] is 
a generalized inverse of matrix [A] if 
 

     A G A G  

 
 The Moore-Penrose pseudoinverse is just one possible generalized inverse of a matrix.  It is the 
one applied most often to redundancy resolution of manipulators.  In addition to the above relationship, 
the following relationships hold for the Moore-Penrose pseudoinverse. 
 

     

      

      

*

*

G A G A

G A G A

A G A G







 

 
where *( )  indicates the complex conjugate transpose. 
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9.  Parallel Robots 
 
9.1  Introduction 
 
Serial vs. Parallel Cartesian Sensitivity 
 

A planar 2-dof 2R serial robot is compared with a planar 2-dof 5R five-bar parallel robot of equal 
link lengths, with regards to Cartesian sensitivity.  i.e. assuming a joint sensing uncertainty of  1   for all 
active and passive joints, the following plots show the Cartesian uncertainty rectangles, but using Forward 
Pose Kinematics (FPK) in each case. 

 
The following two plots show that the workspace for the serial robot is much larger than that of 

the parallel robot, when equal link lengths is the standard.  However, these plots also show that the 
Cartesian sensitivity is much less for the parallel robot than the serial robot. 

 
For the same two robots, the next pair of plots show the same Cartesian sensitivity information, 

zoomed into the same workspace subset.  These plots show even more clearly the large advantage of the 
parallel robot over the serial robot regarding Cartesian sensitivity due to 1   joint sensing uncertainty in 
each case. 
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Serial 2R Robot Workspace and Cartesian Sensitivity 

 
Parallel 5R Robot Workspace and Cartesian Sensitivity 
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Serial 2R Robot Workspace and Cartesian Sensitivity, subset 

 
Parallel 5R Robot Workspace and Cartesian Sensitivity, subset 
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9.2  Planar 2-dof Five-Bar Parallel Robot 
 
9.2.4  Acceleration Kinematics 
 
Step 1. The five-bar robot Position and Velocity Analyses must first be complete. 
 
Step 2.  Identify the five-bar robot acceleration parameters. 
 

ii   (i = 2,3,4,5) is the absolute angular acceleration of link i.  11 0    since link 1, the fixed 

ground link, cannot rotate. 
 
 The velocity equations developed in the Planar 2-dof Five-Bar Parallel Robot Velocity Kinematics 
section are the starting point for deriving the acceleration equations. 
 
 
Forward Acceleration Kinematics 
 
Given r1, 1, r2, r3, r4, r5; angles 2, 3, 4, and 5; angular rates 2 3 4 5, , ,       ; plus actuator angular 

accelerations 2 5,     

 

Find desired end-effector translational acceleration  T
B x y   , plus passive angular accelerations 

3 4,    

 
The acceleration equations come from the first time derivative of the velocity equations as shown below: 
 

2 2 2 3 3 3 5 5 5 4 4 4

2 2 2 3 3 3 5 5 5 4 4 4

r s r s r s r s

r c r c r c r c

   

   

    

  

   
     

 
2 2 2 2

2 2 2 2 2 2 3 3 3 3 3 3 5 5 5 5 5 5 4 4 4 4 4 4

2 2 2 2
2 2 2 2 2 2 3 3 3 3 3 3 5 5 5 5 5 5 4 4 4 4 4 4

r s r c r s r c r s r c r s r c

r c r s r c r s r c r s r c r s

       

       

       

      

       
         

 
 Since all links are rigid (i.e. no links are changing lengths), all 0ir   and 0ir  , thus the eight XY 

pairs of terms above represent the absolute tangential accelerations and absolute centripetal accelerations 
at the endpoint of each link. 
 

Gathering unknowns on the LHS, and substituting the following terms yields the following matrix-
vector equations, two linear equations in two unknowns 3  and 4 : 
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3

4

a b C

d e F



    

    
    


    

3 3

4 4

2 2 2 2
2 2 2 2 2 2 3 3 3 5 5 5 5 5 5 4 4 4

3 3

4 4

2 2 2 2
2 2 2 2 2 2 3 3 3 5 5 5 5 5 5 4 4 4

a r s

b r s

C r s r c r c r s r c r c

d r c

e r c

F r c r s r s r c r s r s

     

     



 

      

 



     

     

     

 

 
The solution of the above matrix-vector set of equations is: 

 

3

Ce bF

ae bd
 



      4

aF Cd

ae bd
 



  

 

With 3  and 4  now known, the end-effector translational acceleration  T
B x y    can be found either 

from the link2/link3 dyad or the link5/link4 dyad; both yield identical results. 
 

2 2
2 2 2 2 2 2 3 3 3 3 3 3

2 2
2 2 2 2 2 2 3 3 3 3 3 3

x r s r c r s r c
B

y r c r s r c r s

   
   

     
    

     

   
   

 
2 2

5 5 5 5 5 5 4 4 4 4 4 4
2 2

5 5 5 5 5 5 4 4 4 4 4 4

x r s r c r s r c
B

y r c r s r c r s

   
   

     
    

     

   
   

 

 
 
Planar Five-Bar Parallel Robot Forward Acceleration singularity condition 
 
 When does the above forward acceleration solution fail?  The forward acceleration coefficient 
matrix is identical to the forward velocity coefficient matrix, which means the singularity conditions are 
identical (i.e. when links 3 and 4 are collinear, corresponding to the branch boundary between the two 
Forward Pose Kinematics solutions). 
 
 
Inverse Acceleration Kinematics 
 
Given r1, 1, r2, r3, r4, r5; angles 2, 3, 4, and 5; angular rates 2 3 4 5, , ,       ; plus desired end-effector 

translational acceleration  T
B x y    

 
Find required actuator angular accelerations 2 5,   , plus passive angular accelerations 3 4,    

 
 
 The actuator unknowns  2 5,    can be found independently from the two vector loop-closure 

equations presented at the end of the Planar 2-dof Five-Bar Parallel Robot Forward Acceleration 
Kinematics section.  Passive unknown angular acceleration 3  can be found along with 2 , and passive 

unknown angular acceleration 4  can be found along with 5 .  The two independent equations for end-

effector acceleration  T
B x y    are repeated below, written in matrix-vector form: 
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2 2
2 2 3 3 2 2 2 2 3 3 3

2 2
2 2 3 3 3 2 2 2 3 3 3

r s r s x r c r c

r c r c y r s r s

  
  

       
           

  
  

  
2 2

4 4 5 5 4 5 5 5 4 4 4
2 2

4 4 5 5 5 5 5 5 4 4 4

r s r s x r c r c

r c r c y r s r s

  
  

       
           

  
  

 

 
 And the inverse acceleration solutions are: 
 

2 2
3 3 2 2 3 2 3 3

2
2 3 2

2 2
2 2 3 3 3 2 2 2

3
3 3 2

cos( )

sin( )

cos( )

sin( )

xc ys r r

r

xc ys r r

r

   
 

   
 

   




    




  

  

  

2 2
5 5 4 4 5 4 5 5

4
4 5 4

2 2
4 4 5 5 5 4 4 4

5
5 5 4

cos( )

sin( )

cos( )

sin( )

xc ys r r

r

xc ys r r

r

   
 

   
 

   




    




  

  

 

 
 
Planar Five-Bar Parallel Robot Inverse Acceleration singularity condition 
 
 When does the above inverse acceleration solution fail?  The inverse acceleration coefficient 
matrices are identical to the inverse velocity coefficient matrices, which means the singularity conditions 
are identical (i.e. when links 2 and 3 are collinear or when links 4 and 5 are collinear, corresponding to 
the branch boundaries between the two Inverse Pose Kinematics solution branches for the link2/link3 dyad 
and also for the link5/link4 dyad). 
 
 
Planar Five-Bar Parallel Robot Acceleration Kinematics for active joints only 
 
 Again, it is possible to solve the Forward and Inverse Acceleration Kinematics problem for the 
planar five-bar parallel robot, ignoring the passive joints velocity variables 3  and 4 .  This is similar to 

that subsection presented in the Planar 2-dof Five-Bar Parallel Robot Velocity Section and is left to the 
interested reader. 
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9.2.5  Inverse Dynamics 
 
Step 1. The five-bar robot Position, Velocity, and Acceleration Analyses must first be complete. 
 
Step 2.  Draw the five-bar robot free-body diagrams (FBDs) 
 
 

 
Five-Bar Parallel Robot Free-Body Diagrams (FBDs) 

 
 
 

ijF  unknown vector internal joint force of link i acting on link j. 

ijr  known moment arm vector pointing to the joint connection with link i from the CG of link j. 
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Step 3.  State the Problem 
 
Given: 

The robot (kinematic parameters 1 1 2 3 4 5, , , , ,r r r r r , masses 2 3 4 5, , ,m m m m , center-of-mass vectors 

2 3 4 5, , ,CG CG CG CG , mass moments of inertia 2 3 4 5, , ,GZ GZ GZ GZI I I I ), kinematic motion angles 2 3 4 5, , ,    , 

angular velocities 2 3 4 5, , ,       , angular accelerations 2 3 4 5, , ,       , translational CG accelerations 

2 3 4 5, , ,G G G GA A A A , and external end-effector force EF   

 
Find: 

The driving actuator torques 2  and 5 , plus internal joint forces 21 32 43 54 15, , , ,F F F F F  

 
 
Count the number of scalar unknowns and the number of scalar equations: 
 

 Since this is planar problem there are three scalar dynamics equations per moving link (two forces 
XY from Newton’s Second Law and one moment Z from Euler’s Rotational Dynamics Equation) 
and there are four moving links, for a total of 3x4 = 12 scalar equations. 

 
 Two vector torques (of one component each) and ten vector internal joint forces (of two 

components each) are identified above, for a total of 1+1+2x5 = 12 scalar unknowns. 
 
Therefore, this problem can be solved. 
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Step 4.  Derive the Newton-Euler Dynamics Equations 
 
Newton's Second Law 
 
  Link 2 

2 32 21 22 GF F F m A    

 
 
  Link 3 

3 43 32 33E GF F F F m A     

 
 
  Link 4 

4 54 43 44 GF F F m A    

 
 
  Link 5 

5 15 54 55 GF F F m A    

 
 
 
Euler's Rotational Dynamics Equation 
 
  Link 2 

2 32 32 12 212 22G G ZM r F r F I        

 
 
  Link 3 

3 43 43 23 32 43 33G E G ZM r F r F r F I         

 
 
  Link 4 

4 54 54 34 43 44G G ZM r F r F I       

 
 
  Link 5 

2 15 15 45 545 55G G ZM r F r F I        
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Step 5.  Derive the XYZ scalar dynamics equations from the vector dynamics equations. 
 
 For each moving link we obtain 
 

 Two XY force component equations from Newton’s Second Law 
 One Z moment equation from Euler’s Rotational Dynamics Equation 

 
 
  Link 2 

32 21 2 2

32 21 2 2

2 32 32 32 32 12 21 12 21 2 2( ) ( )

X X G X

Y Y G Y

X Y Y X X Y Y X G Z

F F m A

F F m A

r F r F r F r F I 

 

 

    

 

 
 
  Link 3 

43 32 3 3

43 32 3 3

43 43 43 43 23 32 23 32 3 3 43 43( ) ( )

X X G X EX

Y Y G Y EY

X Y Y X X Y Y X G Z X EY Y EX

F F m A F

F F m A F

r F r F r F r F I r F r F

  

  

     

 

 
 
  Link 4 

14 43 4 4

14 43 4 4

54 54 54 54 34 43 34 43 4 4( ) ( )

X X G X

Y Y G Y

X Y Y X X Y Y X G Z

F F m A

F F m A

r F r F r F r F I 

 

 

   

 

 
 
  Link 5 

15 54 5 5

15 54 5 5

5 15 15 15 15 45 54 45 54 5 5( ) ( )

X X G X

Y Y G Y

X Y Y X X Y Y X G Z

F F m A

F F m A

r F r F r F r F I 

 

 

    
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Step 5.  Derive the XYZ scalar dynamics equations (cont.) 

 
Write these XYZ scalar equations in matrix/vector form. 
 
Five-bar robot inverse dynamics 12x12 matrix-vector equation 

 
 

12 12 32 32

23 23 43 43

34 34 54 54

45 45 1

1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0

Y X Y X

Y X Y X

Y X Y X

Y X

r r r r

r r r r

r r r r

r r r



 




 



 




 

21 2 2

21 2 2

32 2 2

32 3 3

43 3 3

43 3 3 43 43

54 4 4

54 4 4

15

15

2

5 15 50 1

X G X

Y G Y

X G Z

Y G X EX

X G Y EY

Y G Z X EY Y EX

X G X

Y G

X

Y

Y X

F m A

F m A

F I

F m A F

F m A F

F I r F r F

F m A

F m A

F

F

r








   
   
   
   
       
    
   

      
  
  
  
  
  
  
  
     

4 4

5 5

5 5

5 5

Y

G Z

G X

G Y

G Z

I

m A

m A

I





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

    A v b  

 



Step 6.  Solve for the unknowns  
The coefficient matrix [A] is dependent on geometry (through the moment arms, which are dependent on 
the angles from kinematics solutions).  The known vector {b} is dependent on inertial terms, gravity, and 
the given external forces and moments.  {v} is the vector of unknowns. 
 

Solution by matrix inversion       1
v A b

  

 
 MATLAB v = inv(A)*b; % Solution via matrix inverse 
 
 
Using Gaussian elimination is more efficient and robust to solve for v. 
 
 MATLAB v = A\b;  % Solution via Gaussian elimination 
 
 
The solution to the unknown internal forces and input torque are contained in the components of v.  To 
save these values for plotting later, use the following MATLAB code, inside the for i loop. 
 
   F21x(i) = v(1); 
   F21y(i) = v(2); 

      
   F15y(i) = v(10); 
   tau2(i) = v(11); 
   tau5(i) = v(12); 
 
 
Terms for the matrix-vector equation 
 
Absolute translational center-of-gravity accelerations 
 

2
2 2 2 2 2 2 2

2 2
2 2 2 2 2 2 2

sin cos

cos sin
G X G G

G
G Y G G

A R R
A

A R R

   
   

   
    

   
 

 
2 2

3 2 2 2 2 2 2 3 3 3 3 3 3
3 2 2

3 2 2 2 2 2 2 3 3 3 3 3 3

sin cos sin cos

cos sin cos sin
G X G G

G
G Y G G

A r r R R
A

A r r R R

       
       

     
    

     
 

 
2 2

4 5 5 5 5 5 5 4 4 4 4 4 4
4 2 2

4 5 5 5 5 5 5 4 4 4 4 4 4

sin cos sin cos

cos sin cos sin
G X G G

G
G Y G G

A r r R R
A

A r r R R

       
       

     
    

     
 

 
2

5 5 5 5 5 5 5
5 2

5 5 5 5 5 5 5

sin cos

cos sin
G X G G

G
G Y G G

A R R
A

A R R

   
   

   
    

   
 

 

where 2Gi iR r  for uniformly-distributed homogeneous material with regular geometry. 
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Moment arm position vectors 
 

2
2

12
12

12 2
2

2
2

32
32

32 2
2

cos
2

sin
2

cos
2

sin
2

X

Y

X

Y

r
r

r
r r

r
r

r
r r









         
   

  

 
        

   
  

   

4
4

34
34

34 4
4

4
4

54
54

54 4
4

cos
2

sin
2

cos
2

sin
2

X

Y

X

Y

r
r

r
r r

r
r

r
r r









 
        

   
  

         
   

  

 

 

3
3

23
23

23 3
3

3
3

43
43

43 3
3

cos
2

sin
2

cos
2

sin
2

X

Y

X

Y

r
r

r
r r

r
r

r
r r









         
   

  

 
        

   
  

   

5
5

15
15

15 5
5

5
5

45
45

45 5
5

cos
2

sin
2

cos
2

sin
2

X

Y

X

Y

r
r

r
r r

r
r

r
r r









         
   

  

 
        

   
  
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9.3  Intersection of Two Circles 
 This solution is very useful for many planar mechanisms kinematics problems, the IPK solution 
of the planar 3R robot, plus for many  planar parallel robot kinematics problems. 

The two circles must be totally general (i.e. any centers and any radii).  The use of a different 
coordinate frame, coordinate transformations, and homogeneous transformation matrix concepts from 
robotics can be used to simplify this problem dramatically! 
 

The following notation is used for the two general circles: 

circle 1  center ( , )x ya a  radius 1r 

circle 2  center ( , )x yb b   radius 2r  

 
The two circle equations are: 

2 2 2
1

2 2 2
2

( ) ( )

( ) ( )

x y

x y

x a y a r

x b y b r

   

   
 

 
A simpler method is presented in the EE/ME 4290/5290 NotesBook.  Here we solve the above equations 
directly, without utilizing that transformation approach. 

Expanding these two equations, and subtracting the second one from the first yields (note the 
squared unknowns have been eliminated): y as a function of x: 

 
y dx e   

 
where: 

2 2 2 2 2 2
1 2

( )

( )

2( )

x x

y y

x x y y

y y

b a
d

b a

r r b a b a
e

b a


 



    




 

 
 Substituting this function for y into the first circle equation allows us to solve for x: 

2 0ax bx c    
 
where: 

2

2 2 2 2
1

1

2( )

2

x y

x y y

a d

b de a a d

c a a e a e r

 
  

    

 

 
And so the solution is: 

2

1,2

1,2 1,2

4

2

b b ac
x

a
y dx e

  


 

 

 
Note that these two (x,y) solution points are expressed in the coordinates of the one reference frame {0}. 
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9.4  Planar 3-RPR Manipulator 
 
9.4.1  Planar 3-RPR Manipulator Inverse Pose Kinematics 

 
Planar 3-RPR Manipulator Kinematic Diagram 

 
Inverse Pose Kinematics (for pose control) 

Given:  , ,x y   

Find:  1 2 3, ,L L L  

 
 
Vector loop-closure equations: 

       0 0 0 0

i

H
H H C i i    P R P A L   1, 2, 3i   

 
The vector loop-closure equations are rewritten below: 

       0 0 0 0

i

H
i H H C i    L P R P A   1, 2, 3i   

 
The inverse pose solution is straight-forward, found independently for each of the three legs.  The 
Euclidean norm is used in the equations below. 

 

       0 0 0 0

i

H
i i H H C iL      L P R P A   1, 2, 3i   

 

We can also calculate the intermediate passive joint variables 1 2 3, ,   , (independently for each of the three 

legs) for use in velocity and dynamics analyses.  The quadrant-specific atan2 function must be used in the 
equations below. 

 

1tan iy iy
i

ix ix

C A

C A
   

   
  1, 2, 3i   
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9.4.2  Planar 3-RPR Manipulator Forward Pose Kinematics 
 

3-RPR parallel robot Forward Pose Kinematics (for simulation and sensor-based control) 
 

Given:  1 2 3, ,L L L  

 
Find:  , ,x y   

 
 
This is a coupled, nonlinear problem to solve – it is difficult to solve and multiple solutions generally 
exist, like the Inverse Pose Kinematics problem for serial robots.  We use the same vector loop-closure 
equations from Inverse Pose Kinematics, repeated and with details filled in below: 

 

       0 0 0 0

0

0

i

H
i H H C i

H
i i ix ix

H
i i iy iy

Lc C Ax c s

L s C Ay s c

  
  

    

                     
           

L P R P A

  1, 2, 3i   

 
 
Considering all three legs simultaneously (the problem is coupled and nonlinear), these represent six scalar 

equations in the six unknowns 1 2 3, , , , ,x y     . 

 
We can use the Newton-Raphson numerical iteration technique to solve this Forward Pose 

Kinematics Problem.  We can directly solve the above six equations for the six unknowns. 
 

0

0

H H
i i ix iy ix

H H
i i ix iy iy

L c x c C s C A

L s y s C c C A

  

  

   

   
  1, 2, 3i   

 
 

However, we don’t always need the intermediate variables 1 2 3, ,    (also, we can calculate these 

angles later, using Inverse Pose Kinematics, if required for velocity, dynamics, or computer simulation).  
So, to simplify the Forward Pose Kinematics Problem, square and add each XY equation pair (for all three 

legs) to eliminate the intermediate variables 1 2 3, ,   .  Then we will have three equations to solve for  the 

three primary unknowns , ,x y  .  This problem is solved via the Newton-Raphson iterative numerical 
method in Section 9.5. 

 
2 2 2 2 2 2 2 2( ) 2 ( )

2 ( ) 0

ix iy ix iy i ix iy ix iy ix ix iy iy

iy ix ix iy iy ix

x y A A C C L xA yA c xC yC A C A C

s xC yC A C A C





           

     
 1, 2, 3i   

 

where known constants 0 0, , ,H H
ix iy ix iyA A C C  were shortened to , , ,ix iy ix iyA A C C  for clarity. 
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Alternate analytical 3-RPR manipulator forward pose solution 
 

This 3-RPR robot forward pose problem is equivalent to finding the assembly configurations of a 
four-bar mechanism with known input/output link lengths L1, L2 and an RR constraining dyad of known 
length L3.  By itself the four-bar mechanism has infinite assembly configurations because it has one-dof.  

RR dyad 33CA  constrains the mechanism to a statically-determinate structure of 0-dof.  Point 3C  defines 

a four-bar coupler curve which is a tricircular sextic (sixth-degree algebraic curve) that has a maximum 

of six intersections with the circle of radius L3 centered at 3A  (Hunt, 1990). 

 
 

Figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Branch 1 1 2 2ACC A  is a 4-bar mechanism with input angle 1 and output angle 2 (both unknowns).  

With given lengths L1 and L2, this four-bar mechanism has 1-dof, and it can trace out a coupler curve for 
point C3 in the plane.  In general, this coupler curve is a tricircular sextic.  The forward pose kinematics 

solution may be found by intersecting leg 3 3AC  (a circle of given radius L3, centered at known centerpoint 

A3) with the coupler curve.  There are at most six intersections between a circle and tricircular sextic and 
so there may be up to six real multiple solutions to the 3-RPR parallel robot forward pose kinematics 
problem.  There are always six solutions, but 0, 2, 4, or 6 of these will be real, depending on the 
commanded configuration and robot geometry. 
 
 



 
 

 

56

9.4.3  Planar 3-RPR Manipulator Velocity Kinematics 
 
First the pose configuration variables must all be known.  Then we can define and solve two problems. 
 
Forward velocity kinematics (for simulation) 
 

Given:  1 2 3, ,L L L    

 

Find:  , , zx y   where z    
 
 
Inverse velocity kinematics (for resolved-rate control) 
 

Given:  , , zx y   

 

Find:  1 2 3, ,L L L    

 
 

In both cases intermediate passive joint rate unknowns 1 2 3, ,      are involved.  Both velocity 

kinematics problems use the same rate equations; we will derive these from looking at the three single 
RPR legs separately (meeting at the end-effector).  Here is the figure for the ith leg: 
 

 
 

Planar 3-RPR Manipulator Velocity Diagram, leg i 
 
 
As usual, the velocity equations will be obtained by a time derivative of the applicable pose equations.  
The vector loop-closure equation for leg i is: 

 

       0 0 0 0
H i i Hi  P A L L   1, 2, 3i   
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The XY component equations are: 
 

0

0

cos( )

sin( )

ix i i Hi i i

iy i i Hi i i

x A L c L

y A L s L

  

  

   

   
  1, 2, 3i   

 
 
 
 
and the angle equation is: 

 

i i i        1, 2, 3i   

 
i for use in velocity equations: 
 

1 1 1

2 2 2

3 3

120

270

   

   

  

  

   

  





 

 
These i relationships assume symmetry, with an equilateral end-effector triangle having 

1 2 3 30     
. 

 
 

The velocity equations for one RPR leg are obtained from the first time derivatives of the XY and 
angle equations. 

 
sin( )( )

cos( )( )

i i i i i Hi i i i i

i i i i i Hi i i i i

i i

x L s L c L

y L c L s L

      

      

  

     

    

 

  
  

  
  1, 2, 3i   

 
 
These equations are written in matrix-vector form to yield the RPR leg Jacobian matrix. 

 
sin( ) sin( )

cos( ) cos( )

1 0 1

i i Hi i i i Hi i i i

i i Hi i i i Hi i i i

z i

x L s L c L

y L c L s L L

      
     

 

        
           

         





  1, 2, 3i   

 
 
Written in compact notation: 

 

    i iX J ρ    1, 2, 3i   
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   T

zx y X    is the same for all three legs (the Cartesian end-effector rates).   iρ  includes one 

active and two passive joint rates for each of the three RPR legs, 1, 2, 3i  .  Let us now find the overall 
robot Jacobian matrix, using only active rates and ignoring the passive rates.  Invert the leg Jacobian 
matrix symbolically: 

 

1

i i Hi i

i i ii

i i i Hi i

i i i Hi i z
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         
  

 
 


  1, 2, 3i   

 
 

Clearly the only singularity condition for this operation is when 0iL  , which is generally impossible by 

design for the 3-RPR parallel robot. 
 

Extract only the active joint row of this result and assemble all three active joint rows into the 
overall robot Jacobian matrix: 

 

    

1 1 1 1 1

2 2 2 2 2
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H z
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 


 
 

 
 
This above equation solves the Inverse Velocity Problem.  No inversion is required and so the Inverse 
Velocity problem is never singular.  Above it is expressed in compact notation.  Note inverse velocity 
Jacobian matrix [M] is closely related to the Newton-Raphson Jacobian matrix [JNR] from the numerical 
FPK solution. 
 
 
Forward Velocity Problem 
 

This problem is obtained by inverting the Inverse Velocity Solution: 
 

   1   X M L   

 
 
Ironically, it is the Forward Velocity Problem that is subject to singularities for parallel robots. 
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Example Symbolic MATLAB Code 
 
 Here is the MATLAB code that was used to symbolically invert the RPR leg Jacobian matrix as 
presented above.  Symbolic computing has a lot of power in robot kinematics, dynamics, and control. 
 
 
% 
% Symbolic MATLAB code to invert the RPR leg Jacobian 
% 
 
clear; clc; 
 
% Declare symbolic variables 
L   = sym('L'); 
LH  = sym('LH'); 
t1  = sym('t1'); 
b1  = sym('b1'); 
c1  = sym('cos(t1)'); 
s1  = sym('sin(t1)'); 
cp  = sym('cos(t1+b1)'); 
sp  = sym('sin(t1+b1)'); 
 
% Jacobian elements 
j11 = -L*s1-LH*sp; 
j21 =  L*c1+LH*cp; 
j13 = -LH*sp; 
j23 =  LH*cp; 
 
% Jacobian matrix 
J = sym([j11 c1 j13;j21 s1 j23;1 0 1]); 
 
% Invert 
Jinv = inv(J); 
 
% Simplify 
Jinvsimp = simple(Jinv); 
 
% Check 
Ident1 = simple(Jinvsimp * J); 
Ident2 = simple(J * Jinvsimp); 
 
 
 
Note: the first four lines of the declaration statements of the m-code above may be replaced succinctly 
with: 
 
syms L LH t1 b1; 
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9.5  Newton-Raphson Method 
 

The Newton-Raphson Method involves numerical iteration to solve coupled sets of n nonlinear 
equations (algebraic/transcendental – not ODEs) in n unknowns.  It requires a good initial guess of the 
solution to get started and it only yields one of the possible multiple solutions.  The Newton-Raphson 
method is an extension of Newton’s single function/single variable root-finding technique to n functions 
and n variables.  The following is the form of the given functions to solve. 
 

   ( ) F X 0  

 

where the n functions are    1 2( ) ( ) ( ) ( )
T

nF F FF X X X X  

 

and the n variables are      1 2

T

nx x xX   

 
 
Perform a Taylor Series Expansion of {F} about {X}: 
 

          2

1

n
i

i i j
j j

F
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x
  




   

X X X X   1, 2 , ,i n   

  

Where    ( ) i
NR NR

j

F
J J

x

 
   

  
X  is the Newton-Raphson Jacobian Matrix, a multi-dimensional form of 

the derivative and a function of {X}.  If   X  is small, the higher-order terms   2O X  from the 

expansion are negligible.  For solution, we require: 

     0iF  X X   1, 2 , ,i n   

 
Now with   2 0O  X  we have: 

               
1

0
n

i
i i j i NR

j j

F
F F x F J

x
  




     

X X X X X   1, 2 , ,i n   

 
So to calculate the required correction factor  X  at each solution iteration step, we must solve 

        0NRJ  F X X . 

       1

NRJ  X F X  

 
Solution via Gaussian elimination on       NRJ   X F X  is preferable numerically, since this is 

more efficient and more robust than matrix inversion. 
 
  



 
 

 

61

Newton-Raphson Method Algorithm Summary 
 

0) Establish the functions and variables to solve for:      F X 0  

 

1) Make an initial guess to the solution:  0X  

 

2) Solve          NR k k kJ   X X F X  for  kX , where k is the iteration counter. 

 

3) Update the current best guess for the solution:       1k k k  X X X  

 
4) Iterate until  k X , where we use the Euclidean norm and  is a small, user-defined scalar 

solution tolerance.  Also halt the iteration if the number of steps becomes too high (which 
means the solution is diverging).  Generally less than 10 iterations is required for even very 
tight solution tolerances. 

 
 

If the initial guess to the solution  0X  is sufficiently close to an actual solution, the Newton-

Raphson technique guarantees quadratic convergence. 
 
Now, for manipulator forward pose problems, the Newton-Raphson technique requires a good 

initial guess to ensure convergence and yields only one of the multiple solutions.  However, this does not 
present any difficulty since the existing known pose configuration makes an excellent initial guess for the 
next solution step (if the control rate is high, many cycles per second, the robot cannot move too far from 
this known initial guess).  Also, except in the case of singularities where the multiple solution branches 
converge, the one resulting solution is generally the one you want, closest to the initial guess, most likely 
the actual configuration of the real robot. 

 
There is a very interesting and beautiful relationship between numerical pose solution and the 

velocity problem for parallel robots.  The Newton-Raphson Jacobian Matrix is nearly identical to the 
Inverse Velocity Jacobian Matrix for parallel robots.  (In the planar case it is identical, in the spatial it is 
related very closely.)  This reduces computation if you need both forward pose computation and inverse-
velocity-based resolved-rate control. 
 

3-RPR manipulator forward pose kinematics solution 
 
Use the Newton-Raphson numerical iteration method for solution, with: 
 

   T
x y X  

 
The three coupled, nonlinear, transcendental functions Fi are the squared and added equations for 

each RPR leg, with 
2
iL  brought to the other side to equate the functions to zero. 
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Derive the required Newton-Raphson Jacobian Matrix. 
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where  0 ix

i
iy

A
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 
  
 

A  and    ixH
i
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C
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Use 1, 2, 3i   in the above definitions in the proper places in the overall Newton-Raphson Jacobian 

Matrix.  After the forward pose problem is solved at each motion step, we can calculate the intermediate 

variables 1 2 3, ,    as in inverse pose kinematics solution above. 

 
 

Alternate 3-RPR manipulator forward pose Newton-Raphson solution 
 
As we said, we could have solved the original six equations in the six unknowns including the 

three intermediate variables 1 2 3, ,   .  The functions are simpler (no squaring and adding) but the size of 

the problem is doubled to 1, 2, , 6i   .  Below is the required Jacobian Matrix for this case, where the odd 
functions are the X equations and the even functions are the Y equations; also the variable ordering is 

   1 2 3

T
x y    X . 
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9.6  Parallel Manipulator Workspace 
 
 Since reduced workspace of parallel robots (when compared to serial robots) is their chief 
disadvantage, it becomes very important to determine the workspace of parallel robots and maximize it 
through design. 
 
 There are two workspaces to consider (the same as for serial robots in Section 4.4 of the EE/ME 
4290/5290 NotesBook). 
 

1) reachable workspace is the volume in 3D space reachable by the end-effector in any 
orientation 

 
2)   dexterous workspace is a subset of the reachable workspace because it is the volume 

in 3D space reachable by the end-effector in all orientations. 
 
For parallel robots, the dexterous workspace is almost always null since the rotation capability is 

never full for all three Euler angles; therefore we usually define a reduced dexterous workspace wherein 
all Euler angles can reach 30   or some other user-definable range. 
 
3-RPR Example 

For planar parallel robots we can generally find the reachable workspace using a geometric 
method, figuring out what the end-effector can reach guided by each leg on its own, and then intersecting 
the results. 
 

 
 Example 3-RPR Reachable Workspace 

 
For determination of the dexterous workspace, it is most convenient to numerically or 

geometrically generate in MATLAB the reachable workspace for different  values (end-effector 
orientation) within the desired limits.  Then stack these up and intersect them to find the dexterous 

workspace, defined for a reduced desired rotational range LIMIT . 



 
 

 

64

9.7  NIST RoboCrane Cable-Suspended Parallel Robot 
 
 The NIST RoboCrane2 is a 6-dof, 6-cable-suspended robot that can position and orient its platform 
with 6 Cartesian dof.  The RoboCrane is classified as an underconstrained cable-suspended robot since 
gravity is required in addition to the six active cables in order to try to maintain tension in all cables. 
 
 Like other cable-suspended robots, the RoboCrane shares the advantages of parallel robots vs. 
serial robots; in addition, the parallel robot disadvantage of small workspace is wiped out by the 
RoboCrane, which can have an arbitrarily-large translation workspace (though a very limited rotational 
workspace like other parallel robots).  Cable-suspended robots can be lighter, stiffer, and simpler than 
other rigid-linked parallel robots.  The main disadvantage of the RoboCrane and other cable-suspended 
robots is that their cable tensions can only be actuated unidirectionally; in plain English, you can’t push a 
rope.  This poses a significant controls problem plus the ever-present danger of losing robot tension and 
stiffness with one or more slack cables. 
 

 
RoboCrane CAD Model with Serial Arm and Mobile Robots 

frc.ri.cmu.edu 
  

 
2 J. Albus, R. Bostelman, and N. Dagalakis, 1993, “The NIST RoboCrane”, Journal of National Institute of Standards and 
Technology, 10(5): 709-724. 
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RoboCrane Description 
 

The six-dof RoboCrane is capable of XYZ translational and roll-pitch-yaw rotational control of its 
moving platform within its workspace.  As shown in the kinematics diagrams below, the RoboCrane is 
essentially an inverted Stewart Platform parallel robot controlled by six active tensioning cables in place 
of the six hydraulic actuators.  The side length of the base equilateral triangle is sB and the side length of 
the moving platform equilateral triangle is sP.  At zero orientations, the moving platform equilateral 
triangle is inverted with respect to the base equilateral triangle as shown. 
 

The fixed base Cartesian reference frame is {0}, located on the ground, whose origin is the center 
of the base equilateral triangle (from the top view).  The base equilateral triangle is located at a height H 

above the ground.  The three ground-fixed cable connection points are , 1,2,3iB i  and the three moving-

platform-fixed cable connection points are , 1,2,3iP i .  The six cables are connected between the ground-

fixed and platform-fixed cable connection points as shown.  The six tensioning motors for RoboCrane can 
be mounted on the ground (cables routed via pulleys at the top base frame), on the top base frame, or on 
the moving platform itself.  The moving platform Cartesian reference frame is {P}, whose origin is located 
in the center of the platform equilateral triangle.  At zero Euler angles, the orientation of {P} is identical 
to that of {0}. 
 

The fixed-base cable connection points iB  are constant in the base frame {0} and the platform-

fixed cable connection points iP  are constant in the base frame {P}: 
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where: 
 

3

6B Bh s   
3

3B Bl s    
3

6P Ph s   
3

3P Pl s  

 
  



 
 

 

66

 
RoboCrane Kinematics Diagrams (Top and Front Views) 
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name meaning
sB base equilateral triangle side
sP platform equilateral triangle side
H height from ground to base triangle
hB planar distance from {0} to near base side
lB planar distance from {0} to a base vertex
hP planar distance from {P} to near platform side 
lP planar distance from {P} to a platform vertex
m platform mass

 
 
Inverse Pose Kinematics (IPK) Solution 
 

The 6-cable RoboCrane robot inverse pose kinematics (IPK) problem is stated: Given the desired 
moving platform pose 0

P  T , calculate the six active cable lengths Li, 1, 2, 6i   .  This IPK model assumes 

straight cables (no sag) that are always in tension, and ignores cable mass and elasticity. 
 

The IPK input 0
P  T  may be specified in terms of the desired vector location  0

PP  of the origin 

of moving frame {P} with respect to {0}, plus three angles representing the orientation of moving frame 
{P} with respect to {0}.  Choosing --, Z-Y-X Euler Angles (Craig, 2005), the associated orthonormal 
rotation matrix is: 
 

0
P

c c s c c s s s s c s c

s c c c s s s c s s s c

s c s c c

           
           
    

   
         
  

R  

 
Then the 4x4 homogeneous transformation matrix description of pose is (Craig, 2005): 
 

 0 0
0

0 0 0 1

P P
P

 
 

        
 
  

R P
T  

 
The solution to the RoboCrane IPK problem may be used as the basis for a pose control scheme, 

executing pre-planned trajectories and other motions within its workspace.  Like most cable-suspended 
robots and many parallel robots in general, the RoboCrane IPK solution is straight-forward and poses no 
computational challenge for real-time implementation.  Given the desired moving cabin pose 0

P  T , we 

find the moving platform cable connection points Pi.  Then the inverse pose solution consists simply of 
calculating the cable lengths using the Euclidean norm of the appropriate vector differences between the 
various moving and fixed cable connection points.  The IPK solution yields a unique closed-form solution.  
The moving cable connection points P1, P2, and P3 with respect to the fixed base frame {0} are: 
 

   0 0 P
j P j   P T P   1, 2,3j   
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where the  P

jP  vectors were given previously.  Note we must augment each position vector above with 

a ‘1’ in the fourth row to make the 4x4 matrix multiplication valid.  The RoboCrane straight-cable IPK 
solution is then: 
 

0 0
1 1 1L  B P   0 0

2 1 2L  B P  

 
0 0

3 2 2L  B P   0 0
4 2 3L  B P  

 
0 0

5 3 3L  B P   0 0
6 3 1L  B P  

 
Note the direction of the six cable length vectors above were chosen in the direction of positive cable 
tensions. 
 
 
RoboCrane Forward Pose Kinematics (FPK) Solution 
 

The 6-cable RoboCrane forward pose kinematics (FPK) problem is stated: Given the six active 
cable lengths Li, 1, 2, 6i   , calculate the resulting moving platform pose 0

P  T .  The FPK solution for 

cable-suspended robots and other parallel robots is generally very difficult.  It requires the solution of 
multiple coupled nonlinear (transcendental) algebraic equations, from the vector loop-closure equations.  
Multiple valid solutions generally result. 

 
Referring to the kinematics diagrams, we see that the RoboCrane FPK problem is identical to the 

FPK solution for an upside-down 3-3 Stewart Platform (assuming straight cables always under positive 

tension).  The FPK solution is based on identifying 3 known triangles, 1 2 2BPB , 2 3 3B PB , and 3 1 1B PB .  

Construct a virtual link to jP , perpendicular to base line i kBB  for each of these three triangles.  Imagine 

rotating each triangle (each virtual link) about i kBB .  The FPK solution exists where all three jP  rotate 

until 1 2PP , 2 3PP , and 3 1PP are each of the correct, known lengths sP simultaneously.  This solution was 

presented by Dr. Bob3.  The solution boils down to an 8th-order polynomial, meaning that there are 
potentially 8 multiple solutions.  Even pairs of some of these solutions may be imaginary. 
 

 
3 R.L. Williams II, 1992, "Kinematics of an In-Parallel Actuated Manipulator Based on the Stewart Platform Mechanism", 
NASA Technical Memorandum 107585, NASA Langley Research Center, Hampton, VA. 
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Figure 8.  RoboCrane FPK Diagram 

 
 
RoboCrane Pseudostatic Analysis 
 

To maintain safe and stable control in all motions, all cable tensions must remain positive at all 
times.  Gravity acting on the moving platform is required to ensure that the six active cables remain in 
tension, as long as the rotations are not too far from the nominal horizontal orientation.  A pseudostatic 
model is developed in this section and applied to the RoboCrane inverse statics solution. 
 
Equations for Static Equilibrium 
 

This section presents statics modeling for the six-cable-suspended RoboCrane robot.  All six active 
cables connect in parallel from the fixed base to the moving platform, as shown in the kinematics 
diagrams.  Again we assume straight cables (no sag) that are always in tension, and ignore cable mass and 
elasticity.  In pseudostatics it is assumed that the focus cabin accelerations and velocities are low enough 
to justify ignoring inertial dynamic effects and use statics equations of equilibrium. 
 

For static equilibrium the vector force sum and vector moment sum of the six active cable tensions 
plus gravitational loading and external wrench acting on the focus cabin must balance to zero.  The statics 
free-body diagram for the moving platform is shown below, where CG indicates the center of gravity 
location.  The six active cable tension vectors are ti, 1, 2, 6i   . 
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RoboCrane Statics Free-Body Diagram 

 
The vector force and moment equations of static equilibrium are: 
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where ˆ
i i itt L  is the vector cable tension applied to the moving platform by the ith active cable (in the 

positive cable length direction ˆ
iL  as established in IPK); m is the moving platform mass; 

 0 0
T

g g  is the gravity vector; EXTF  is the external vector force exerted on the moving platform 

by the environment;    0 P
i P j i   m R P t  is the moment due to the ith active cable tension ( P

jP is the 

moment arm from the moving platform control point P to the jth active cable connection point, expressed 
in {P} coordinates); P

CGP  is the position vector to the moving platform CG from the moving platform 

control point P (the origin of {P}); and EXTM  is the external vector moment exerted on the moving 

platform by the environment.  Moments are summed about the moving platform control point P and all 
vectors must be expressed in a common frame; {0} is chosen. 
 

Now we derive the pseudostatics Jacobian matrix based on the vector force and moment statics 
equations.  Substituting the above details into the static equilibrium equations yields: 
 

    EXT S t W G  
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where    1 2 6

T
t t tt   is the vector of active cable tensions,    0 TP

P CGm m G g R P g  is the 

gravity wrench vector,    T

EXT EXT EXTW F M  is the external wrench vector, and the statics Jacobian 

matrix  S  is: 

 

  1 2 3 4 5 6

1 1 2 2 2 3 3 4 3 5 1 6

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

 
  

       

L L L L L L
S

P L P L P L P L P L P L
 

 
where    0 0 P

j j P j    P P R P , 1, 2,3j  . 

 
 
RoboCrane Inverse Pseudostatics Solution 

 

The statics equations can be used in two ways.  Given the active cable tensions  t  and the six 

cable unit vectors ˆ
iL  from kinematics analysis, forward statics analysis uses the equations of static 

equilibrium directly to verify statics equilibrium.  For control, simulation, and valid-tension workspace 
determination, the more useful problem is inverse statics analysis.  This problem is stated: calculate the 

required active cable tensions  t  given the focus cabin mass and pose, plus all ˆ
iL .  It is solved by 

inverting the static equilibrium equations: 
 

     1

EXT

  t S W G  

 

The statics Jacobian Matrix  S  is a square 6x6 matrix and hence the standard matrix inverse 

applies in (11).  A unique  t  solution is guaranteed if the RoboCrane robot is not in a singular pose. 

 
Assuming pseudostatic motion, the inertia of the actuator shafts do not enter into the analysis and 

the statics torque/tension relationship for each of the 6 actuators is i i irt  , 1, 2, 6i   , where i  is the ith 

actuator torque, ir is the ith cable reel radius, and it  is the ith cable tension. 
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RoboCrane Examples 
For these examples, the RoboCrane dimensions are sB = 10 m, sP = 3 m, H = 8 m, and mP = 100 

kg.  All examples assume the platform CG is located at the origin of {P} so that  0 0 0
TP

CG P .  Also 

there is zero external wrench  EXTW . 

 
 
Snapshot Example 

Given    0 1 2 3
T

P P  m and    10 6 4       , the calculated IPK and inverse 

statics results are: 

 7.080 8.313 6.203 5.777 8.494 8.711
TL  m 

 

   325.1 125.2 318.6 352.4 76.1 123.8
Tt  N 
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Trajectory Example 

The moving platform control point {P} traces a circle of center  0 0 4
T

 and radius 2 m, with 

zero orientations    0 0 0    .  At the same time, the Z displacement goes through 2 entire 

sine wave motions centered on Z = 4 m with a 1 m amplitude. 
 

 
Circular Trajectory 

 

  
Cable Lengths     Cable Tensions 
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9.8  Delta Parallel Robot Inverse and Forward Kinematics 
 

 Clavel’s 3-RUU Delta Robot4 is arguably the most successful commercial parallel robot to date.  
The left image below shows the original design from Clavel’s U.S. patent5, and the right photograph below 
shows one commercial instantiation of the Delta Robot. 
 

   
Delta Robot Design1    ABB FlexPicker Delta Robot 

www.abb.com 
 

The Delta Robot has 4-degrees-of-freedom (dof), 3-dof for XYZ translation, plus a fourth inner leg 
to control a single rotational freedom at the end-effector platform (about the axis perpendicular to the 
platform).  The remainder of this document will focus only on the 3-dof XYZ translation-only Delta Robot 
since that is being widely applied by 3D printers and Arduino hobbyists. 

 
Presented is a description of the 3-dof Delta Robot, followed by kinematics analysis including 

analytical solutions for the inverse position kinematics problem and the forward position kinematics 
problem, and then examples for both, snapshots and trajectories.  The revolute-inputs 3-RUU and the 
prismatic inputs 3-PUU Delta Robots are both covered. 
 

This section is presented on-line: 
 

ohio.edu/mechanical-faculty/williams/html/pdf/DeltaKin.pdf 
 
  

 
4 R. Clavel, 1991, “Conception d'un robot parallèle rapide à 4 degrés de liberté”, Ph.D. Thesis, EPFL, Lausanne, Switzerland. 
5 R. Clavel, 1990, “Device for the Movement and Positioning of an Element in Space”, U.S. Patent No. 4,976,582. 
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9.9  Stewart Platform 
 
 The 6-UPS Stewart-Gough Platform, shown below, has seen significant practical applications 
from flight simulators and entertainment, to haptic interfaces and general parallel robots. 
 

 
6-dof Stewart Platform Parallel Robot 

 
 Please see the following link for Dr. Bob’s NASA Technical Memorandum presenting the 
kinematics of the Stewart Platform: 
 

ohio.edu/mechanical-faculty/williams/html/PDF/StewartPlatform.pdf 
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10.  Serial Robot Acceleration Kinematics 
 

The acceleration vector is the first time derivative of the velocity vector (and the second time 
derivative of the position vector).  It is linear in acceleration terms but nonlinear in rate components.  Both 
Cartesian acceleration and velocity are vectors, with translational and rotational parts. 

Acceleration Kinematics Analysis is useful for 
 Resolved Acceleration Control 
 Acceleration of any point on manipulator 
 Moving objects in workspace – smooth trajectory generation 
 Required for Dynamics 

 
Translational Acceleration 
  k i

jA  is the translational acceleration of the origin of frame {j} with respect to reference frame 

{i}, expressed in the basis (coordinates) of {k}. 
 
Transport Theorem (Craig, 2005) 

        A B A B A A B
B B Q B B

d
R Q R V R Q

dt
              

 
General five-part acceleration equation 
 
Position 

     
   

A A A B
B B

A A B
B

P P R P

P T P

    
   

 

 
 

Velocity 

       
         0

A A A B A B
B B B

P

V P R P R P

V V V P

       
   

  
 

 
 
Acceleration 

          
                    
                    0

2

2

A A A B A A B
B B P B B P

A A A B A A B A A B A A A B
B B P B B P B B P B B B P

P

d
A V R V R P

dt

A A R A R V R P R P

A A A V P P



   

   

         

                      

        
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Rotational Acceleration 
  k i

j  is the rotational acceleration of frame {j} with respect to reference frame {i}, expressed in 

the basis (coordinates) of {k}.  No angular orientation exists for which we can take the time derivative to 
find the angular velocity.  Instead we use relative velocity equations. 
 
 Rotational Velocity 
       A A A B

C B B CR        

 
 Rotational Acceleration 

  
           
         

A A A B A A B
C B B C B B C

A A A B A A B
C B B C B B C

d d
R R

dt dt

R R

    

    

         

         

 

 
  For vectors expressed in the local frame 
            A B C B CA A A A B A A A B

C B B C C B B C CR R R R                       

 
 

Combined Translational and Rotational Acceleration 

   
 

a
X


    
  

   where 
   
   

0 0

0 0

N

N

a A

 




  both a and  are (3x1) vectors 

 
 

Acceleration Example 
 
Planar 2R robot – acceleration of end-effector frame with respect to {0}, also expressed in {0}. 
 
1)  Craig (2005) acceleration recursion 
 

 
1

1
2 0

0

L

P

 
   
 
 

   
2

2
3 0

0

L

P

 
   
 
 

  
2 2

2
1 2 2

0

0

0 0 1

c s

R s c

 
       
  

   3
2 3R I     

 

 0
0

0

0

0


 
   
 
 

   0
0

0

0

0


 
   
 
 

   0
0

0

0

0

a

 
   
 
 

 

 

 1
1

1

0

0


 
   
 
 

   1
1

1

0

0


 
   
 
 

   1
1

0

0

0

a

 
   
 
 
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 2
2

1 2

0

0
 

 
   
   

  2
2

1 2

0

0
 

 
   
   

 

               

 

2 2 1 1 1 1 1 1
2 1 1 2 1 1 2 1

2 2
2 2 1 1 1 2 1 1 2 1

2 2
2 2 2 1 1 1 2 1 1 2 1

0

0

0 0 1 0 0

a R P P a

c s L L c L s

a s c L L s L c

  

  
  

       

      
           
         

  
  

 

 
 

   3 2
3 2

1 2

0

0 
 

 
    
   

  

               

 

3 3 2 2 2 2 2 2
3 2 2 3 2 2 3 2

2 2
2 1 2 1 2 1 1 2 1

3 2
3 2 1 2 1 2 1 1 2 1

( )

( )

0

a R P P a

L L c L s

a L L s L c

  

   
   

       

    
     
 
 

   
   

 

 
 

   

 
 
 

0 0 3
3 3 3

2 2
1 1 1 1 1 2 12 1 2 12 1 2

0 2 2
3 1 1 1 1 1 2 12 1 2 12 1 2

( ) ( ) ( )

( ) ( ) ( )

0

a R a

L s c L s c

a L c s L c s

     

     

   

      
        
 
  

     

     

 

 
 Rewrite for comparison to results in the next section. 
 

    1 1 2 12 2 120 1 1 1 1 2 12 1 2 1
3

1 1 2 12 2 12 2 1 1 1 2 12 1 2 1 2

( )

( ) ( )

L s L s L s L c L c
a

L c L c L c L s L s

    
     

           
                 

    
       

 
 

 The second term above can be written as 
 

  1 1 1 2 12 1 2 2 12 1 2 1

1 1 1 2 12 1 2 2 12 1 2 2

( ) ( )

( ) ( )

L c L c L c

L s L s L s

     
     

       
         

     
       
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Acceleration Example (cont.) 
 
 Planar 2R robot – acceleration of the end-effector frame with respect to {0}, also expressed in {0}.  
An alternative method is presented here. 
 
2)  Differentiation of rate equation 

 

    X J            X J J     
    

 
 Do in frame {0} – if in frame {2} or {3}, one must account for r . 

 

1 1 2 12 2 12
0

1 1 2 12 2 12

1 1

L s L s L s

J L c L c L c

   
       
  

 

 
  ijdJd J

J
dt dt

 
      

 
  

 

1 2

1 2

ij ij ij ij N

N

dJ J J J dd d

dt dt dt dt

    
  

      
1

N
ij ij

k
k k

dJ J

dt






    

 

1 1 2 12 1 2 12 2 2 12 1 2 12 2
0

1 1 2 12 1 2 12 2 2 12 1 2 12 2

( )

( )

0 0

L c L c L c L c L c

J L s L s L s L s L s

   
   

     
          
  

   
     

 

1 1 1 2 12 1 2 2 12 1 2
0

1 1 1 2 12 1 2 2 12 1 2

( ) ( )

( ) ( )

0 0

L c L c L c

J L s L s L s

    
    

     
          
  

    
      

 

     0 0 0X J J       
    

 

 
1 1 2 12 2 12 1 1 1 2 12 1 2 2 12 1 2

0 1 1
1 1 2 12 2 12 1 1 1 2 12 1 2 2 12 1 2

2 2

( ) ( )

( ) ( )

1 1 0 0

L s L s L s L c L c L c

X L c L c L c L s L s L s

    
 

    
 

         
                          

    
 

    
 

  
This yields the same result as before. 
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Uses for general acceleration equation 
 

    
      
        1

X J

X J J

J X J



 

 



    

    



  

  

 

 
i.  Forward Acceleration Kinematics Analysis –       X J J     

    predicts the Cartesian 

accelerations  X  given the joint rates and accelerations. 

 
ii.  Resolved Acceleration Control – like resolved rate, but acceleration is commanded instead of 
velocity.  Solve         1

J X J      
    and double integrate to get the commanded joint 

angles. 
 
iii.  Dynamics equations –    is required for the Newton/Euler dynamics recursion in the EE/ME 

4290/5290 Supplement, Chapter 5.  If acceleration is calculated via numerical differentiation, 
numerical instability can result, so the analytical approach         1

J X J      
    is better. 

 
 

Now, if inverse dynamics control is being used in the resolved-rate control algorithm framework, 
assume  X  is constant and so    0X  .  In this case: 

 

     1
J J      

   

 
How can we find the time rate of change of the Jacobian matrix J  

 ?  See the previous page for a specific 

example. 
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11.  Serial Robot Dynamics 
 

Kinematics is the study of motion without regard to forces. 
 
Dynamics is the study of motion with regard to forces.  It is the study of the relationship between 
forces/torques and motion.  Dynamics is composed of kinematics and kinetics. 
 
 a)  Forward Dynamics (simulation) – given the actuator forces and torques, compute the resulting 
motion (this requires the solution of highly coupled, nonlinear ODEs):  Given {}, calculate      , ,     

(all are N x 1 vectors). 
 
 b)  Inverse Dynamics (control) – given the desired motion, calculate the actuator forces and 
torques (this linear algebraic solution is much more straight-forward than Forward Dynamics):  Given   

     , ,    , calculate {} (all N x 1 vectors). 

 
Both problems require the N dynamic equations of motion, one for each link, which are highly coupled 
and nonlinear.  There are two basic methods for deriving the dynamic equations of motion. 

 Newton-Euler recursion (force balance, including inertial forces with D'Alembert's principle). 
 Lagrange-Euler formulation (energy method). 

 
Kinetics 
 Translational  Newton's Second Law 
 
     Inertial force at center of mass  

 
 
 Rotational  Euler's Equation 
 
     Inertial moment anywhere on body 

 
 

 The kinematics terms      , ,Ci i ia    must be moving with respect to an inertially-fixed frame.  

The frame of expression {k} needn't be an inertially-fixed frame. 
 
Assumptions 

 serial robot 
 rigid links 
 ignore actuator dynamics 
 no friction 
 no joint or link flexibility 
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11.1  Inertia Tensor (Mass Distribution) 
 

The inertia tensor is a spatial generalization of the planar scalar moment of inertia.  Its units are 
mass times distance2 (kg-m2).  The symmetric inertia tensor expressed at a given point A in the rigid body, 
relative to frame {A} is: 
 

xx xy xz
A

xy yy yz

xz yz zz

I I I

I I I I

I I I

 
   
  

 

 
 

 Mass moments of inertia 
   2 2

xx V
I y z dv    2 2

yy V
I x z dv    2 2

zz V
I x y dv   

 
 Mass products of inertia 
  

xy V
I xy dv    

xz V
I xz dv    

yz V
I yz dv   

 
 Principal moments of inertia 
 A certain orientation of the reference frame {A}, the principal axes, yields zero products of inertia.  
The invariant eigenvalues of a general [AI] are the principal moments of inertia, and the eigenvectors are 
the principal axes. 
 
 More interesting facts regarding inertia tensors 

1) If two axes of the reference frame form a plane of symmetry for the mass distribution, the 
products of inertia normal to this plane are zero. 

 2) Moments of inertia must be positive, products of inertia may be either sign. 
 3) The sum of the three moments of inertia are invariant under rotation transformations. 
 
 Parallel-axis theorem 
 We can obtain the mass moment of inertia tensor at any point {A} if we know the inertia tensor at 

the center of mass {C} (assuming these two frames have the same orientation).   T

C C C CP x y z  is 

the vector giving the location of the center of mass {C} from the origin of {A}. 
 
 Here are some example inertia tensor components using the parallel axis theorem. 

 2 2A C
zz zz C C

A C
xy xy C C

I I m x y

I I mx y

  

 
 

 
 Here is the entire inertia tensor expressed in vector-matrix form using the parallel axis theorem. 

       3

T TA C
C C C CI I m P P I P P             
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11.2  Newton-Euler Recursive Algorithm 
 
 This is a recursive approach (Craig, 2005) based on free-body diagrams (FBDs) to determine the 
dynamics relationships link-by-link.  Used numerically it can calculate the inverse dynamics solution 
efficiently. 
 
Free-body diagram of link i 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  if  internal force exerted on link i by link i-1. 

  in  internal moment exerted on link i by link i-1. 

 
 
Inertial loads  Newton and Euler translational and rotational dynamics equations 
 
 
 
 
 
 
 
Force balance 
 
 
 
 
 
 
 
Moment balance (about CGi)  (using D'Alembert’s principle, the inertial force is –m{a}). 
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Newton-Euler Recursive Algorithm Summary 
This methods can be used to find the robot dynamics equations of motion.  It can also be used to 

directly solve the inverse dynamics problem numerically.  The summary of equations below, from Craig 
(2005), assume an all revolute-joint manipulator (prismatic joint dynamics have different equations). 

 
Outward iteration for kinematics : 0 1i N   
 (without regard for frames of expression, for clarity) 
 
  Velocities and accelerations (kinematics) 
 

     
         
              
              

1 1 1

1 1 1 1 1

1 1 1

1 1
1 1 1 1 1 1 1

ˆ

ˆ ˆ

i i i i

i i i i i i i

i i
i i i i i i i

i i
Ci i i Ci i i Ci

Z

Z Z

a a P P

a a P P

  

    

  

  

  

    

  

 
      

 

   

     

     



 
 

 
 

  Inertial loading (kinetics) 
 

   
       

1 1 1

1 1 1 1

i i Ci

C C
i i i i

F m a

N I I  
  

   



        
 

 
 
Inward iteration for kinetics : 1i N   
 (without regard for frames of expression, for clarity) 
 
  Internal forces and moments 
 

     
             

1

1 1 1

i i i

i i
i i Ci i i i i

f f F

n n P F P f N



  

 

     
 

 
 

  Externally applied joint torques 
 

   i i in Z    

 
 

Inclusion of gravity forces 

   0
0a g  

 
 This is equivalent to a fictitious upward acceleration of 1g of the robot base, which accounts for 
the downward acceleration due to gravity (i.e. this conveniently includes the weight of all links). 
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11.3  Lagrange-Euler Energy Method 
 

This is an alternative method to find the robot dynamics equations of motion.  It requires only 
translational and rotational link velocities, not accelerations.  The Lagrangian is formed from the kinetic 
energy k and potential energy u of the robot system. 
 

( , ) ( )L k u k u       
 

       

   0 0

1 1

2 2

T T Ci
i i Ci Ci i i i

i REF i Ci

k m V V I

u u m g P

     

  
 

 

1

( , )
N

i
i

k k


      
1

( )
N

i
i

u u


   

 
  

 Note 

    1
( , ) ( )

2

T
k M        where  ( )M   is the manipulator mass matrix. 

 
 
Dynamic equations of motion 
 These are found for each active joint from the following expression involving the Lagrangian, joint 
variable, and actuator torque.  Perform this equation N times, once for each joint variable i, to yield N 
independent dynamics equations of motion. 
 

i
i i

d L L

dt

  
 

 
  

 
 

 
 

 This expression may be rewritten using ( , ) ( )L k u    . 
 

i
i i i

d k k u

dt

   
  

 
   

 
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11.4  Simple Dynamics Example 
 
Derive the dynamic equation of motion for a planar one-link 1R mechanism by three methods: 
 1)  Sophomore dynamics method – FBD, force and moment dynamics balance. 
 2)  Newton-Euler recursion. 
 3)  Lagrange-Euler formulation. 
 

 
 
1)  Sophomore methods - FBD, force balance  Free-Body Diagram 

 
 

Y

LX




g



 mg

-F
X

-F
Y



FY

FX
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1)  Sophomore methods – FBD, force balance (cont.) 
 

 a) 0 2

0 2

2 2

( )
2

x Cx

x

x

F ma

L L
F m s c

mL
F s c

   

   



    
 

  



 

 

 
 

 b) 0 2

0 2

2 2

( )
2

y Cy

y

y

F ma

L L
F mg m c s

L
F mg m c s

   

   



    
 

  



 

 

 
 

 c) 
0

0

0

2

2

z

mL
M I gc

mL
I gc

  

  

  

 

 


   where  

2
0 2

4
C C

zz

mL
I I md I     
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Simple Dynamics Example (cont.) 
 

2)  Newton-Euler recursion 
 
 Outward iteration  i = 0 (the only iteration) 
 

 0
1

0

0

0

P

 
   
 
   

  1
1

2
0

0
C

L

P

 
 
 

  
 
 
 

   1
0

0

0

0 0 1

c s

R s c

 
 

 
   
  

  1
1

0 0

0 0

0 0

xx
C

yy

zz

I

I I

I

 
   
  

 

 

 0
0

0

0

0


 
   
 
 

   0
0

0

0

0


 
   
 
 

   0
0

0

0

a g

 
   
 
 

 to account for gravity 

 

               

 

1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0

1
1

0 0

0

0 0 1 0 0

a R P P a

c s gs

a s c g gc

  

  
  

       

     
          
         

 

 

              

2

1 1 1 1 1 1 1
1 1 1 1 1 1 1

2

2
0

C C C

L
gs

L
a P P a gc

 

    

  
 
         
 
 
  



  

 

   

2

1 1
1 1

2

2
0

C

L
gs

L
F m a m gc

 

 

  
 
    
 
 
  



          1 11 1 1 1
1 1 1 1 1 1

0

0C C

zz

N I I

I

  


 
            
 
 
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 Inward iteration  i = 1  (the only iteration) 
 

 2
2

0

0

0

f

 
   
 
 

   2
2

0

0

0

n

 
   
 
 

 

 

     

2

1 1 2 1
1 2 2 1

2

2
0

L
gs

L
f R f F m gc

 

 

  
 
       
 
 
  



  

 

             

 

1

1 1 2 1 1 1 1 2 1
1 2 2 1 2 2 2 1

1
1

0 0

0 0

2 2

C

zz

n R n P F P R f N

n

ImL L
gc


 

           

 
           
           




 

 

   1 1
1 1

2

ˆ

4 2zz

n Z

mL mL
I gc



  



 
   
 



  

 
 

 Check with the sophomore dynamics method above. 
 

   

2 2

0 0 1 2
1 1 1

2 2 20

0
2 2 2

0 0 1 0 0

L L L
gs c s

c s
L L L

f R f s c m gc m s c g

     
 
       

        
     

                 
         
      

  

    
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3)  Lagrange-Euler formulation 
 

 1
1

0

0


 
   
 
 

  1
1

0 0

0 0

0 0

xx
C

yy

zz

I

I I

I

 
      
  

 

 
Kinetic and potential energy are scalars invariant with frame of expression – write k in {1} and u in {0}. 

 

 
1

1

0

2
0

C

L
v 

 
    
 
  

     11 1
1 1 1

0 0

0 0C

zz

I

I

 
 

   
          
   
   

 
 

 

 

2
2 21 1

2 4 2 zz

mL
k I   

   

20

0
2 2

0 0

L
c

L L
u m g s mg s



 

 
 

   
         
   
   

  

  

 
2

21

2 4 2zz

mL L
L k u I mg s 

 
     

 
  

 
d L L

dt

  


    
 

 

 
2

4zz

L mL
I

 


 
  

 


   
2

4zz

d L mL
I

dt

 


       
   


   

2

L L
mg c

 


  

 
2

4 2zz

mL mL
I gc  

 
   
 


 

 

This result agrees with the sophomore and Newton-Euler recursion dynamics methods above to solve the 

same problem. 
 

  



 
 

 

91

11.5  Structure of Manipulator Dynamics Equations 
 
State Space Equation 

        ( ) ( , ) ( )M V G           

 

   ( )M   N N  mass matrix; symmetric and positive definite 

   ( , )V    1N   vector of Coriolis and centripetal terms 

   ( )G  1N   vector of gravity terms 

 
 
Configuration Space Equation 

            2( ) ( ) ( ) ( )M B C G                

 

   ( )M   N N  mass matrix; symmetric and positive definite 

   ( )B   
 1

2

N N
N


  Coriolis matrix 

      
 1

1
2

N N 
    1 2 1 3 1

T

N N     
       

   ( )C   N N  centripetal matrix 

   2   1N        2 2 2
1 2

T

N      

   ( )G  1N   vector of gravity terms 

 
 
Cartesian State Space Equation 

        ( ) ( , ) ( )x x xF M X V G         

 

   ( )xM   N N  Cartesian mass matrix; symmetric and positive definite 

   ( , )xV    1N   vector of Cartesian Coriolis and centripetal terms 

   ( )xG   1N   vector of gravity terms in Cartesian space 

 
where         note 
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11.6  Robot Dynamics Example 
 

Here we summarize the dynamics equations of motion for the two-link planar 2R robot when 
each link is modeled as a homogeneous rectangular solid of dimensions Li, hi, wi of mass mi.   

 

 
 
 

Newton-Euler recursion with outward kinematics and inertial calculations, followed by inward 
kinetics balances yields. 
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where 
2 2( )

12
i

zzi i i

m
I L h  . 

 
These dynamics equations of motion are very complicated – imagine how much worse these 

equations will be for a spatial 6-axis robot such as the PUMA industrial robot. 
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 1
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State Space Representation 
 
 For the planar 2R robot, the dynamics equations of motion from the previous page are expressed 
in state-space form below: 
 

        ( ) ( , ) ( )M V G               1
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Configuration Space Representation 
 
 For the planar 2R robot, the dynamics equations of motion from the previous page are expressed 
in configuration-space form below. 
 

            2( ) ( ) ( ) ( )M B C G                  

 

   ( ) , ( )M G   same as above 
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Numerical Dynamics Example 
 
 For the planar 2R robot whose dynamics equations of motion were presented analytically above, 
here we calculate the required torques (i.e. solve the inverse dynamics problem) to provide the commanded 
motion at every time step in a resolved-rate control scheme.  Identical results are obtained by both 
analytical equations and numerical Newton/Euler recursion. 
 
 
Given 

L1 = 1.0 m 
L2 = 0.5 m 

 

Both links are solid steel with mass density  = 7806 
3kg m  and both have width and thickness 

dimensions w = t = 5  cm.  The revolute joints are assumed to be perfect, connecting the links at their very 
edges (not physically possible, just a simplified model). 
 

The initial robot configuration is 

  1

2

10

90




  
     

   




 

 

The constant commanded Cartesian velocity is 

 
0 0

0 0

0.5

x
X

y

   
    

   




 (m/s) 

 

 The dynamics equations require the relative joint accelerations  ; how do we find these?  (See 
the last page of the Acceleration Kinematics Section 10 in this EE/ME 4290/5290 NotesBook Supplement: 

      1J X J        
   .  In this example,    0 0

T
X  .) 

 
Simulate motion for 1 sec, with a control time step of 0.01 sec.  The plots for various variables of 

interest (joint angles, joint rates, joint accelerations, joint torques, and Cartesian pose) for this problem 
are given on the following page. 
 

In the last plot, note that the robot travels 0.5 m in the Y0 direction in 1 sec (which agrees with the 
constant commanded rate of 0.5 m/s).  The robot does not move in X;  must move to compensate for the 
pure Y motion, but we cannot control  independently with only two-dof.  The first three plots are 
kinematics terms related to the resolved-rate control scheme; they are inputs to the inverse dynamics 
problem.  The joint torques are calculated by the numerical recursive Newton-Euler inverse dynamics 
algorithm.  These are the joint torques necessary to move this robot’s inertia in the commanded manner.  
Notice from the joint angles, joint rates, joint accelerations, and joint torques plots that the robot is 
approaching the 2 = 0 singularity towards the end of this simulated motion. 
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Numerical Dynamics Example: Plots 
 

 
 

 
 

  
Dynamics Results Ignoring Gravity  Dynamics Results Including Gravity 

 
  

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4

1.6

1.8

2
Cartesian Pose

time (sec)

x  
(r

),
 y

 (
g

),
 

 (
b

) 
 (

m
,r

ad
)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90
Joint Angles

time (sec)


1 (

r)
, 


2
 (

g
) 

(d
eg

)

0 0.2 0.4 0.6 0.8 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Joint Rates

time (sec)

jo
in

t 
1  

(r
),

 jo
in

t 
2  

(g
) 

(r
ad

/s
)

0 0.2 0.4 0.6 0.8 1
-20

-15

-10

-5

0

5

10
Joint Accelerations

time (sec)

jo
in

t 
1  

(r
),

 jo
in

t 
2  

(g
) 

(r
ad

/s
2 )

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80
Joint Torques

time (sec)

 
(1

-r
ed

; 
2-

gr
ee

n)
 (
N

m
)

0 0.2 0.4 0.6 0.8 1
-50

0

50

100

150

200

250
Joint Torques

time (sec)

 
(1

-r
ed

; 
2-

gr
ee

n)
 (
N

m
)



 
 

 

96

12.  Robot Control Architectures 
 
 With the robotic kinematics and dynamics we have learned and simulated, we can simulate robot 
control using various popular robot control architectures. 
 
12.1  Inverse Pose Control Architecture 
 

      
 
 
 
 
 
 
 
 
 
 
 
12.2  Inverse Velocity (Resolved-Rate) Control Architecture 
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12.3  Inverse Dynamics Control Architecture 
 

The inverse dynamics method is also called the computed torque control method, and it is also 
called the feedback linearization control method. 
 

In Chapter 4 we learned that the robot dynamics equations of motion are highly coupled and 
nonlinear.  Here they are in matrix/vector form. 

 

          ( ) ( , ) ( , ) ( )M V F G               

 
 

  {  vector of applied joint torques 

   ( )M   N N  mass matrix; symmetric and positive definite 

   ( , )V    1N   vector of Coriolis and centripetal terms 

   ( , )F    1N   vector of friction torques 

   ( )G  1N   vector of gravity terms 

     , ,     1N   joint angles, rates, and accelerations vectors 

 
 

 

Computed Torque Control Architecture 
 
 The computed-torque control method is based on canceling the dynamics effects by using the 
inverse dynamics method, in order to linearize the robot system for standard controller methods, such as 
PID control. 
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12.4  NASA Langley Telerobotics Resolved-Rate Control Architecture 
 
 Below is pictured the Intelligent Systems Research Laboratory (ISRL) at NASA Langley Research 
Center, circa 1992. 
 

  
 
Force-Reflecting Operator Station  Dual PUMA Robots with Space Station Task 

 
NASA Langley Research Center Telerobotics Laboratory (ISRL) 

 
Below is shown the overall resolved-rate-based robot control architecture developed at NASA 

Langley Research Center in the Automation Technology Branch, with Dr. Bob on the team, in the early 
1990s.  This controller architecture was novel and is still unique in robot control. 
 

 
 

NASA Langley Research Center Telerobotic Controller Architecture 
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In the top, forward control path above we see that resolved-rate (inverse velocity) is the basic 
control method, as opposed to inverse pose control.  Being a linear problem, the resolved-rate method has 
several attractive benefits over IPK control including the ability to add velocity control inputs as vectors, 
which is not possible with IPK (due to orientation). 

 
The total Cartesian velocity vector (translational and rotational) input  determining the robot 

motion is the sum of four inputs, from the hand controller, position controller, vision controller, and 
force/torque controller.  The displacement of the hand controller is interpreted as a velocity input, for both 
the translational and rotational modes.  Often the joystick will have a hardware or software spring return-
to-center, including deadbands, to more easily turn off velocities after certain directions are finished for 
the time being.  The position, vision, and force controllers (details hidden) yield a Cartesian velocity that 
will move the robot in the direction that the control algorithm determines in each case. 

 
Not all control modes need be enabled at all times, but all can be combined is desired.  This could 

lead to controller contention.  If the joystick enables force reflection, this provides an extra sensory 
feedback back to the human operator which has been proven very effective in many experiments in 
different research labs.  Today we call this force-reflection aspect of telerobotics haptics. 
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12.5  Naturally-Transitioning Rate-to-Force Controller Architecture 
 
 Resolved-rate control automatically (naturally) changes to force control when the robot end-
effector enters into contact with the environment.  A force/torque (F/T) sensor and force/moment 
accommodation (FMA) algorithm is required to accomplish this.  After contact, the constant velocity 
command becomes a constant force command.  In addition, if there is a human teleoperator with haptic 
interface, the force/moment that the human applies to the interface becomes proportional to the 
force/moment that the robot exerts on the environment at contact.  This works and feels great in real-world 
applications, providing telepresence. 
 

 
 
 

This control architecture was implemented by Dr. Bob and teams at NASA Langley Research 
Center and Wright-Patterson AFB6F

6. 
 
  

 
6 R.L. Williams II, J.M. Henry, M.A. Murphy, and D.W. Repperger, 1999, Naturally-Transitioning Rate-to-Force Control in Free and 
Constrained Motion, ASME Journal of Dynamic Systems, Measurement, and Control, Trans. ASME, 121(3): 425-432. 
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12.6  Single Joint Control 
 
Every controller architecture we’ve considered requires linearized independent (but simultaneous) 

single joint angle control, presented in this section. 
 
Manipulator dynamics is extremely complicated considering the number of terms.  We can easily 

use symbolic MATLAB to crank out the terms but they go on for pages and their structure is difficult to 
understand.  In this case, numerical Newton-Euler recursion a’la Craig (2005, Chapter 6) is useful to get 
around the need for analytical expressions. 

 
How is manipulator dynamics done in industry for control purposes?  In almost all cases it is 

ignored.  How is this possible? (Large gear ratios tend to decouple the dynamic coupling in motion of one 
link on its neighbors – we will see this in modeling soon.)  The vast majority of multi-axis industrial robots 
are controlled via linearized, independent single joint control.  So, robot control in industry is generally 
accomplished by using N independent (but simultaneous) linearized joint controllers, where N is the 
number of joint space freedoms of the robot. 

 
We now will briefly discuss single joint control.  We will focus on a common system, the armature-

controlled DC servomotor driving a single robot joint / gear train / link combination, shown below.  This 
requires dynamics, but it is not coupled nor nonlinear. 

 
Open-Loop System Diagram 
 

 
 
 

V(t) armature voltage M(t) generated motor torque L(t) load torque 
L armature inductance M(t) motor shaft angle L(t) load shaft angle 
R armature resistance M(t) motor shaft velocity L(t) load shaft velocity 
iA(t) armature current JM lumped motor inertia JL(t) total load inertia
vB(t) back emf voltage CM motor viscous damping CL load viscous damping
  n gear ratio  
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Closed-Loop Feedback High-level Control Diagram 
 
 
 
 
 
 
 
 
 
 
 

High-level Computer Control Diagram 
 

 
 
 
 
 
 
 
 
 
 
Simplifying Assumptions 

 rigid motor, load shafts 
 n >> 1 (the large gear ratio n reduces speed and increases torque) 

 
 
Real-world vs. model characteristics 
 

Real World Our Model (simplified) 
nonlinear 
 

linearized 

multiple-input, multiple output (MIMO) 
 

single-input, single output (SISO) 

coupled 
 

decoupled 

time-varying load inertia treat as a disturbance; the large gear ratio 
diminishes this problem

hysteresis, backlash, stiction, Coulomb friction 
 

ignore 

discrete and continuous 
 

continuous for control design 
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Single Joint/Link System Modeling 
 

We must derive all linear ordinary differential equations (ODEs) describing the dynamics of an 
armature-controlled DC servomotor driving a single robot joint / link.  This is an electromechanical 
system, including a gear train.  We must perform modeling, simulation, and control.  The system diagram 
was shown earlier in this section. 
 
Armature Circuit Diagram 
 
 
 
 
 
 
 
 
 
 
Electrical Model  Kirchoff’s voltage law   

 
 
 
 

(1) 
 
 
 
 
 
 
Electromechanical coupling 

 The generated motor torque is proportional to the armature current 
 

(2) 
 The back-emf voltage is proportional to the motor shaft angular velocity 

 
(3) 

 
(KT = KB can be shown) 
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Mechanical Model 
Euler’s Equation (the rotational form of Newton’s Second Law): 
 
 

 
Free-body diagrams 
 
 
 
 
 
 
 
 
 
 
 
 
Load   

 (4) 
 
 
Motor   

 (5) 
 
where ( )LR t   is the load torque reflected to the motor shaft. 

 
 
 
 
 
Gear ratio n 
 
 

       (6) 
 
 
Substituting (6) into (5) yields (7) 
 

(7) 
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Reflect load inertia and damping to motor shaft 
 

Substitute     into (4) 
 

 (8) 
 
 

Substitute  (8)  into  (7) to eliminate L 
 
 

 (9) 
 

Combine terms 
 

(10) 
 

define 

2
L

E M

J
J J

n
    effective inertia, total reflected to motor shaft 

2
L

E M

C
C C

n
   effective damping, total reflected to motor shaft 
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Final Mechanical Model (ODE) 
 

     (11) 
 
 
 

This is a second-order ODE in M.  Can also  be written as first-order ODE in M. 
 

     (12) 
 
 

For common industrial robots, n >> 1 so 2

1

n
 is small; therefore we can choose a nominal JL and 

assume it is constant without much error in control. 
 

For example, the NASA 8-axis ARMII robot downstairs has n = 200 with harmonic gearing.  This 
is why we can ignore the time-varying robot load inertia and design decoupled independent linear joint 
controllers.  The gear-reduced load inertia variation is then treated as a disturbance to the single joint 
controller. 
 
 

An alternative is to reflect the motor inertia and damping to the load shaft as shown below, but 
we will use the first case above. 
 

2 2( ) ( )L M L L M L LJ n J C n C        
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Open-Loop Block Diagram 
 
Use Laplace transforms on different ODE pieces of the system model and then connect the 

components together in blocks connected by arrows representing variables.  A transfer function goes 
inside each block representing component dynamics.  This block diagram is shown below, in 
MATLAB/Simulink implementation, including a disturbance torque. 
 

 
 
 
 
Closed-Loop Feedback Control Diagram 

 
Assuming perfect encoder sensor for angular position feedback, we include block for the single-

joint PID controller.  The MATLAB/Simulink implementation is shown below. 
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PID Controller Design 
 

PID Controller characteristics 
 

PID stands for: 
 
 

Controller transfer function: 
 
 

Each term does this: 
 
 
 
 
 
Use PID w/ approximate derivate in Simulink – numerical differentiation can lead to errors and numerical 
instability and thus it is to be avoided if possible. 
 
 
Trial and Error PID Design 
 

Start with the P gain value – start low and increase P to get the desired time nature of response.  
Then add the D gain value term for stability.  Add the I gain value to reduce steady-state error.  Always 
use Simulink to simulate control and dynamics response of the single joint/link system for different PID 
choices; compare various cases and select a suitable controller in simulation. 
 

A better approach is to perform analytical design for PID controllers using classical control theory, 
such as in ME 3012. 
 
 
Controller Performance Criteria 

 Stability 
 Rise Time 
 Peak Time 
 Percent Overshoot 
 Settling Time 
 Steady-state error 

 
These performance criteria provide a rational basis for choosing a suitable controller, at least in theory 

and simulation.  The real world always provides some additional challenges (noise, modeling errors, 
nonlinearities, calibration, backlash, etc.). 
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Include Gravity as a Disturbance Torque 
 

Unmodeled, unexpected disturbances are modeled as disturbances in control systems.  It is 
convenient to do so at the motor torque level in the block diagram. 
 
 
 
 
 
 
 
Gravity is known and expected.  However, in single joint control we can include the effect of gravity as a 
disturbance.  First let us model the gravity effect for a single joint.  Lump all outboard links, joints, and 
motors as a single rigid body. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 test with original PID gains 
 redesign new PID gains with gravity disturbance considered 

 


